

+ Ľ Y C

Application for Part B Environmental Permit Frank H. Dale Limited

FRANK H DALE LIMITED Mill Street Leominster Herefordshire HR6 8EF

Tel: 01568 612212

Protecting the Employee

Protecting the Company

Developing the Business

Frank H. Dale Limited

Contents

		Cover	
		Contents	
1	Introduction and Site Plans		
2	Site layout		
	2.1	Layout of Activities	
	2.2	Layout of Paint Room	
3	Deta	ils of the Installation	
	3.1	Activities Associated with the Painting Process	
	3.2	Delivery, Storage & Handling	
	3.3	Monitoring	
4	Envi	ronmental Risks & Their Controls	
	4.1	Maintenance	
5	Environmental Management		
6	Envi	ronmental Impact	
	App	endices	
	1	ISO 14001:2015 Environmental Management System Standard Certificate	
	2	Extraction Commissioning Certificate	

Frank H. Dale Limited

1. Introduction and Site Plans

Frank H Dale Limited are in the planning stages of returning a portion of its steel fabrication process to its Mill Street factory. The facility occupies 100,000 square feet.

As part of this process, it is the intention of Frank H. Dale Limited to utilise the facility to apply an Intumescent coating to the already primed steelwork it fabricates at its Owen Way facility. In order to safeguard the health of the workforce the paint shop, where this process is carried out, is fitted with an extraction system which captures and releases VOCs emitted from the coating to atmosphere via a stack mounted on the roof of the facility.

Frank H. Dale Limited believes there will be a significant increase in the clients specifying factory applied intumescent coatings and as a result of the drying times involved, there is a potential for the Owen Way facility to become congested. As a result of this, it is the intension to use Mill Street specifically for this purpose and due to predicted volumes, it is believed that the organisation will see VOC emissions in excess of the consumption limit.

The approximate location of the stack is highlighted by the red circle in the map below:

Image taken from Bing Maps © 2019 Microsoft – Courtesy of Ordnance Survey

Aerial Photography (*Figure 2*) shows the location of the stack which is marked "Point B". The facility is located on the outskirts of the Leominster Town approximately 0.5 km North of the City Centre. It is surrounded by residential housing to the North West and West, further businesses to the South and farmland to the East. The River Lugg which is a SSSI is located approximately 150m North of the facility. The new town Doctors Surgery is located on land to the rear of the building, however this is still currently under construction.

Figure 2 Aerial Image

2. Site Layout

2.1. Layout of Activities

Pumping Machine Pumping Machine Paint Barrel in Use Stored sealed paint barrels WASH	
Spraving Locations	C
Mixing Manifold	

2.2. Layout of Paint Room

3. Details of the Installation

Frank H. Dale Limited surrendered its previously held permit to apply coatings for its Mill Street facility in November 2022 when it mothballed the site as part of its move to its new facility on Owen Way. Since it took this action, there has been an increase in the number of clients seeking factory applied intumescent coating of structural steelwork which to date FHD has undertaken in limited quantities. Moving forward, the organisation intends to reopen its Mill Street facility to carry out this coating activity on its fabricated and primed steelwork from its Owen Way Site before it is dispatched to its construction sites. As part of this process and forecast of future work, it believes it will likely exceed the consumption limit in the future and will therefore require a permit for the activity.

The painting process is carried out in accordance with EN ISO 12944-7, using a solvent containing paint. The paint is delivered to the facility in sealed 200 litres barrels where they are offloaded and moved into the paint store. The paint store is fitted with a bund which is capable of holding 110% of the largest container which is stored in this area.

The barrels are fitted onto a pumping system which pump and stir the supplied intumescent coating through to a mixing manifold located in the centre of the paint spraying shop.

Painting is carried out by hand spraying application in an established format which minimises overspray. Difficult or hard to reach areas will be coated using a brush or roller.

Once applied the steel is moved into a drying area where the paint is allowed to dry, in line with manufacturers recommendations, before it is transferred to the opposite bogie line and moved back into the paint shop where a top / sealer coat is applied to protect the intumescent paint from damage and the weather. Following this application, the bogie is moved into a final drying area where the sealer / top coat is allowed to dry in line with manufacturers recommendations and once sufficiently cured / dried, will be moved into the loading bay for loading on to trailer for transportation to site.

At the end of the working day, if a fault occurs with the system or if a change of paint colour is required, then the paint lines will be cleaned with paint thinners. Lines are flushed through until the thinners run clear and spray guns and other associated application equipment is washed using an automated bath which captures waste thinners for recycling.

Paint barrels, contaminated kiln dried sand, contaminated paint suits, rags and waste paint and thinners are all disposed of as hazardous waste.

Frank H. Dale Limited is predicted to have a VOC consumption rate over the annual consumption rate of 5 tonnes and therefore will require a permit to carry out this coating process.

3.1. Activities Associated with the Painting Process

The principal activities associated with the painting process are as follows:

- Application of paint by manual spraying process
- Delivery and return of paint and thinners in 200 litre barrels for storage in the paint store
- Cleaning of equipment at the end of the process with the use of thinners flushed through the lines and returned to the supplier for recycling
- Crushing and disposal of used paint barrels
- Disposal of used paint suits and contaminated rags as hazardous waste
- Collection and disposal of kiln dried sand contaminated with paint overspray
- Emission of VOCs through stack via extraction system

The flow diagram below outlines the keys process involved with the application of paint to steel:

The main source of release to atmosphere is from the extraction system which is installed to protect the health of the employees working within the paint shop. This system has been in place for a number of years with thorough examinations being undertaken every 14 months in line with legislative requirements. This was last inspected on 18th February 2025 where the system was operating in accordance with its design and the recommended capture velocities.

Each capture hood is fitted with a particulate filter which captures any large particulates before they can enter the system. Emissions from the stack are colorless and the outlet is sufficiently sized to allow for dissipation of VOCs therefore reducing any potential for odour.

A diagram of the extraction system can be found below and a copy of the latest Thorough Examination can be found at Appendix 2.

Figure 5 Paint Shop Extraction Line Drawing

Figure 4 Process Flow

3.2. Delivery, Storage and Handling

Paint and thinners are delivered on a just in time basis as a means of reducing the stock stored at any one time. These products are delivered on the back of a curtain sided lorry in 200 litre barrels on pallets. Pallets are shrunk wrapped before being delivered to Frank H. Dale Limited to ensure stability of the products during transit.

On arrival, a trained Frank H. Dale Limited employee unloads the pallets with the use of a fork lift truck or side loader and transports them into the paint store. The paint store is made up of a concrete floor with a channel cut out around the external edge leading to an external bund. The capacity of this bund exceeds 110% of the largest container stored within this area.

Employees manoeuvre paint barrels around with the use of hydraulic barrel trolleys, manual barrel trolleys and overhead cranes fitted with barrel clamps.

3.3. Monitoring

Frank H. Dale Limited will comply with the solvent reduction scheme and demonstrate annually by calculation that the mass emission of VOC to atmosphere is less than or equal to the Target Emission. The target emission being the mass of all solid coating materials multiplied by a factor to give the maximum allowable VOC emissions.

Frank H. Dale Limited has predicted their annual solvent consumption by July 2025 to be around 10.17 tonnes resulting in a target emission of total mass of solids x 0.6.

Along with the above, a daily olfactory assessment will be made for odour emissions from the installation while the process is operating a full capacity or as close to this as can be reasonably achieved. The assessment will be made at the installation boundary and take into account the wind direction that day.

Frank H. Dale Limited conducts air quality monitoring every 14 months to ensure that the employees working in these areas are not being exposed above the workplace exposure limited (WEL) as set out in EH40. This test is due to be undertaken once the facility re-opens to ensure that controls are sufficient in keeping employees exposure below the WEL.

4. Environmental Risks and their Controls

Frank H. Dale Limited have established procedures for dealing with unintended release of substances which are supported by suitable assessments for the location where the process is being carried out as well as Safe Systems of Work for dealing with the release. The key significant environmental risks associated with the activity and the implemented controls can be found in Table 1 below:

Environmental Risk	Controls		
Release of VOCs to atmosphere	 Reduction scheme in place LEV extraction system fitted with particulate filters Good housekeeping practices Correct disposal of contaminated equipment Containers stored with sealed lids Daily olfactory inspection carried out 		
Accidental spillage of paint or thinners during delivery	 Spill response procedure Spill kits and safe system of work in place to contain spilled material Materials delivered on pallets and unloaded by trained operatives Correct disposal of contaminated equipment 		
Accidental spillage of paint or thinners during storage	 Spill response procedure Spill kits and safe system of work in place to contain spilled material Substances stored within a bunded area capable of holding 110% of largest container Correct handling techniques 		
Rainwater run off – external storage areas	 Substances stored under cover Containers stored with sealed lids 		

Table 1 Significant Environmental Risks and Controls

	 External storage of materials kept to a minimum Daily olfactory inspection carried out Regular collection and disposal of empty containers Monthly factory inspections
Failure of pumping equipment leading to loss of product	 Planned maintenance carried out Maintenance reporting and isolation procedure Substance stored within a bunded area capable of holding 110% of largest container Spill kits and safe system of work in place to contain spilled material Incident reporting and investigation

The VOCs produced as part of the painting process are released directly to atmosphere after passing through a particulate filter fitted to each of the extraction capture hoods. As discussed in section 3.3, Frank H. Dale Limited complies with the solvent reduction scheme as a means of reducing the VOCs being released as part of this process.

4.1. Maintenance

Frank H. Dale Limited operates a planned maintenance and cleaning schedule at its facility on Mill Street in order to ensure that the Transfer Pumps and Paint lines remain in an efficient operating condition. The operatives carry out pre start inspections of the equipment and notify the in-house Maintenance Engineer should a fault be identified.

Operatives carry out daily cleaning operations including a daily full wash out of the system. This process may also be carried out throughout the day, should a fault with the system occur or should an alternative paint colour be required.

Planned maintenance takes place in line with the system manufactures recommendations

5. Environmental Management

The facility, procedures and processes used for the application of paint at Frank H. Dale Limited's facility are covered by the Environmental Management System Standard ISO 14001:2015 to which Frank H. Dale Limited is certified.

This standard requires that assessments are made taking into account the environmental aspects and impacts of the organisations operations and that procedures are in place to ensure that the environment is protected so far as is reasonably practicable.

6. Environmental Impact

The site on Mill Street is located on the Northern outskirts of the town of Leominster and has had a presence in this location since 1950. As a result, it is not anticipated that there will be complaints arising as a result of the facility being recommissioned. In relation to the emission of VOCs, the facility was previously the main fabrication facility used by the organisation until October 2022, where it moved the majority of its operations to Owen Way. Prior to this, over 10,000 tonnes of steelwork were fabricated annually at Mill Street, with the majority requiring a primer coat to be applied under a previously held permit. As such, it is not anticipated there will be any complaints from the local population.

The facility is located approximately 150 metres from the River Lugg to the North and 200m to the South and East. This river is designated a Site of Special Scientific Interest (SSSI). This is highlighted in red in Figure 6 below:

Frank H. Dale Limited

Source: naturalengland-defra.opendata.arcgis.com - Esri UK, Esri, HERE, Garmin, INCREMENT P, USGS, METI/NASA

Appendices to Application for Part B Environmental Permit Frank H. Dale Limited

Appendix 1

ISO14001 Certificate Frank H. Dale Limited Mill Street

Certificate of Registration

This certificate has been awarded to

Frank H. Dale Limited

Mill Street, Leominster, Herefordshire, HR6 8EF, United Kingdom

in recognition of the organization's Environmental Management System which complies with

ISO 14001:2015

The scope of activities covered by this certificate is defined below

The Design, Fabrication and Erection of Structural Steel Frames for Industrial and Commercial Buildings

	uned with UKS, at such, the fol	lowing statement shall apply - "the validity of this carrificate papends on the va	STRETTY OF THE MILLING CAPTURATE
Date of Issue of Certification Cycle	lssue Number	Certificate Expiry Date	Certification Cycle
03 November 2024	11	02 November 2027	7
Revision Date	Revision Number	Original Certificate Issue Date	Scheme Number
01 October 2024	0	03 November 2006	n/a

For detailed explanation for the data fields above, refer to http://www.urs-holdings.com/logos-and-regulations

If there is any doubl as to the authenticity of this certificate, please do not healtate to contact the Head Office of the Group on Info@urs-certification corn. URS is a member of United Registrar of Systems (Holdings) trd, United House, 28 Poole Hilt, Bournemouth BH2 SPS, UK. Company Registration no. 5298466

Appendix 2

Extraction System Thorough Examination

REPORT ON **ROUTINE** THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

IN COMPLIANCE WITH REGULATION 9 OF COSHH REGULATIONS 2002

SYSTEM	DETAILS & ID

Site Name:	Frank H Dale	System ID:	LEV01
Site Address:	Mill Street Leominster Herefordshire HR6 8EF	Location:	Spray Room
Date of TExT:	18 February 2025	Process:	Spray Painting – Paint Fumes

SUMMARY OF THE ASSESSMENT OF CONTROL

SATISFACTORY

	EXAMINERS/COUNTERSIGNATORIES			
Examiner Name	Designation	Date	Signature	
Brandon Whittaker	Brandon Whittaker Engineer 18-02-2025 Blhitfalu		B.Whittaker.	
Examiner Qualification(s)	Date(s)	Certificate No(s)		
BOHS P601	December 2014	20141205-	19857-5314	
Client Representative Accepting Report	Title	Date	Signature	

1. EXECUTIVE SUMMARY

Brandon Whittaker visited site on 18.02.2025 to conduct the **Routine** Thorough Examination and Test (TExT) of this LEV System to comply with Regulation 9 of CoSHH 2002 (As amended).

The system is a fixed fan unit installed in the Painting area. The system consists of filter sections which extracts the paint fume and exhausts above the roof line. The system controls and extracts Paint fume and has not changed since the initial Routine Thorough Examination and Test (TExT) of this LEV System.

We conducted quantitative assessments and Duct/Face velocity readings The results recorded were in line with the TExT data. Qualitative assessments were undertaken using smoke testing the unit was stood down, simulated use of the process was observed, Based upon the collective findings we find this system to be operating Satisfactory if properly used and maintained.

Our findings are further detailed within this report.

2. DEFECTS & RECOMMENDATIONS					
LEV Examiner			Employer's Use		
Item in LEV System	Action Required	Priority*	Person to Take Action	Target Date	Date Completed
Shade Red any C	ritical Defects Found				
*Priority – e.g. 1 = high, 2 = normal, 3 = routine, 4 = awareness Shade RED all Critical Defects					

3. SYSTEM GENERAL DESCRIPTION	SYSTEM PHOTOGRAPH(S)
All Capture hoods were in good condition, Ho 13 and 14 no longer in use. The system contai magnehelic gauges.	<image/>
4. PLANT, PROCESS & LEV ARRANGEMENT AT	ГТЕХТ
Was the Plant, Process and the LEV/Control Syste Operating Normally at TExT? If not explain how TExT was undertaken.	The LEV was observed while simulated process was carried out.
5. TEST FREQUENCIES	
Interval between Routine Examinations:	14months
Date of Previous Examination:	05/04/2022
Date next TExT Due:	18 April 2026

6. PRE-TEST		
Is System Installation Exactly as Initial TExT?	Yes	
LEV System Manual Available?	No	
LEV System Log Book Available?	No	

7. OCCUPATIONAL HYGIENE		
Has Occupational Hygiene Monitoring been carried out in this Area since previous TExT?	Customer to confirm.	
If 'Yes', Summarise Findings:	N/A	

8. FAN	
Is Fan Rotating in Correct Direction?	Yes
Fan Inlet Static Pressure (Pa):	N/A
General Condition of Fan:	ОК

9. FILTER	
General Physical Condition of Filter Unit:	Ok
Primary Filter Pressure Drop:	N/A
Secondary Filter Pressure Drop:	N/A
Recirculating Filter Efficiency:	N/A
Cleaning Mechanism Operating Correctly?	Yes
Condition of Filter Media:	Good
Evidence of Contaminant Break-through?	None
Condition of Media and Bin Seals?	N/A
Condition of Door Seals?	N/A

10. DUCT	
Duct Temperature (°C):	22.3
Barometric Pressure (mB):	1007mb
External Condition of Duct:	Ok
Damper Settings:	Dampers preset.
Internal Examination (visual/borescope):	Ok

11.	STACK	
Conditio	on of Stack and Termination:	Above roofline

12. MAKE-UP AIR	
Adequate Quantity?	N/A
Induced Drafts Evident?	N/A
Other Comments:	N/A

13. CHECK ALARMS	
Hood/Enclosure:	N/A
Air Cleaner:	N/A

Returned Air:	N/A
Other:	N/A

15. DUCT QUANTITATIVE RESULTS								
Test	Diameter/	Duct Area	Static	Average	Duct Velocity		Duct Volume flow *	
Point	Dimension		Pressure	Velocity	Measured	Min Transport Velocity		
ID	or Length			Pressure				
	and Width							
	(mm)	(m²)	(Pa)	(Pa)	(m/s)	(m/s)	(m³/hr)	
TP1	0.25	0.049	273	-	11.59	10.0	2,048.38	
TP2	0.25	0.049	239	-	10.06	10.0	1,777.98	
TP3	0.25	0.049	246	-	10.31	10.0	1,822.16	
TP4	0.25	0.049	290	-	12.39	10.0	2,189.78	
TP5	0.25	0.049	366	-	13.90	10.0	2,456.65	
TP6	0.25	0.049	178	-	10.05	10.0	1,776.21	
TP7	0.25	0.049	206	-	10.30	10.0	1,820.40	
TP8	0.25	0.049	318	-	10.06	10.0	1,777.97	
TP9	0.25	0.049	240	-	11.21	10.0	1,981.23	
TP10	0.25	0.049	239	-	10.90	10.0	1,926.44	
TP11	0.25	0.049	177	-	10.52	10.0	1,859.28	
TP12	0.25	0.049	234	-	10.82	10.0	1,912.30	
16. HOODS								
Process	Conditions at 7	Fime of Test: S	Simulated Hood Pass /Fail Labels Fitted? N/A					
Operato	ors Working at I	Process N	No					
During	Routine TExT?							
If 'Yes' -	- Describe how	operator N	N/A					
using/interfacing with system:								

17. HOOD QUANTITATIVE RESULTS									
Hood	Hood Type/Description	Hood	Sash or	Face Velocity		Hood	Capture Distance		Volume
ID		Open	Opening		Min	Static	Fletchers	Confirmed	Flow
		Area	Height	Actual	Required	Pressure	Calculated	with	Rate
							Distance	Smoke	
		(m²)	(m)	(m/s)	(m/s)	(Pa)	(mm)		(m³/hr)
H1	Capture Hood	0.343		1.59	0.50 – 1.0	N/A		Yes	1,963.33
H2	Capture Hood	0.343		1.77	0.50 - 1.0	N/A		Yes	2,185.59
H3	Capture Hood	0.343		1.60	0.50 - 1.0	N/A		Yes	1,975.68
H4	Capture Hood	0.343		1.53	0.50 - 1.0	N/A		Yes	1,889.24
H5	Capture Hood	0.343		1.69	0.50 - 1.0	N/A		Yes	2,086.81
H6	Capture Hood	0.343		1.29	0.50 - 1.0	N/A		Yes	1,592.89
H7	Capture Hood	0.343		1.30	0.50 - 1.0	N/A		Yes	1,605.24
H8	Capture Hood	0.343		1.66	0.50 - 1.0	N/A		Yes	2,049.77
H9	Capture Hood	0.343		1.44	0.50 - 1.0	N/A		Yes	1,778.11
H10	Capture Hood	0.343		1.43	0.50 - 1.0	N/A		Yes	1,765.76
H11	Capture Hood	0.343		1.20	0.50 - 1.0	N/A		Yes	1,481.76
H12	Capture Hood	0.343		1.18	0.50 - 1.0	N/A		Yes	1,457.06

18. QUALITATIVE TESTS & VISUAL INSPECTION REPORT

Smoke Test – capture was observed.

19.	20.	INSTRUMENTS USED	
Instrument description		Serial Number	Calibrated
Fluke 922 Micromanometer		26360595	10 Jul 2025
Si-VH3 Thermal hotwire anemometer		46508793	10 Jul 2025
Airflow Rotating vane anemometer 922		0259965	10 Jul 2025
Fluke 9062 Rotation indicator		91600450	N/A
HT-9600 indicative particle		201909023384	N/A
counter			

21. REFERENCES

HSG258; Controlling airborne contaminates at work. A guide to local exhaust ventilation (LEV); HSE Books

L5; The Control of Substances Hazardous to Health Regulations (CoSHH) 2002. Approved Code of Practice and guidance (Sixth Edition) HSE Books

Management of Health and Safety at Work Regulations; The stationary office 1999 SI 1999/3242. The Dust Lamp: a simple tool for observing the presence of airborne particles. MDHS82/2; HSE Books 2015

EH40/2005 Workplace Exposure Limits: Containing the list of workplace exposure limits for use with the Control of Substances Hazardous to Health Regulations 2002 (as amended); January 2020; ISBN: 9780717667031

Industrial Ventilation: A Manual of Recommended Practice for Design, 30th Edition; ISBN: 978-1-607261-08-7 2019