Hereford Multi-Modal Model

## Forecasting Report

## Report

JMP Consultants Limited
85-89 Colmore Row
Birmingham
B3 2BB

T 01212306010
F 01212306011
E birmingham@jmp.co.uk
www.jmp.co.uk

Job No. MID2517-A

Report No. 1

Prepared by Andrew Battye

Verified Arun Bhatti

Approved by Alan Bain

Status Final

Issue No. 4a

## Hereford Multi-Modal Model

## Forecasting Report

Report

## Contents Amendments Record

This document has been issued and amended as follows:

| Status/Revision | Revision description | Issue Number | Approved By | Date |
| :--- | :--- | :--- | :--- | :--- |
| Draft |  | 1a | Alan Bain | 19/06/2009 |
| Draft | Changes to East ODR | 2 a |  | $20 / 06 / 2009$ |
| Draft | Comments from HC | 3 a |  | $31 / 07 / 2009$ |
| Final | Corrected Cross Reference | 4 a | Alan Bain | $02 / 09 / 2009$ |

## Contents

EXECUTIVE SUMMARY ..... 1
Background to the study ..... 1
What growth options and transport interventions have been tested? ..... 1
The study's overall objectives ..... 1
The methodology adopted ..... 1
Findings - what are the impacts on the Local Highway Network? ..... 2
1 INTRODUCTION ..... 3
Summary of the objectives ..... 4
Report Structure ..... 4
2 FORECASTING METHODOLOGY ..... 5
Overview ..... 5
Outline Methodology ..... 5
Future Year Demand Matrices ..... 6
Future-Year Transport Networks ..... 12
Initial Assignments ..... 15
DIADEM ..... 15
3 MODAL SPLIT ..... 17
4 MODEL PERFORMANCE STATISTICS ..... 20
5 ANALYSIS OF HIGHWAY MODEL RESULTS ..... 32
Introduction ..... 32
Link Flow Analysis ..... 32
Impact of ODR ..... 45
Journey Time Analysis ..... 48
Impact on A49 Trunk Road ..... 51
Over-Capacity Junctions ..... 52
6 DETERMINATION OF PREFERRED OPTION. ..... 54
Do-Minimum Case ..... 54
Growth Point Demand with No Highway Improvements ..... 54
Growth Point Demand with Outer Distributor Road on Western Alignment. ..... 54
Growth Point Housing with Outer Distributor Road on Eastern Alignment ..... 55
Preferred Development Option ..... 55
Overall Preferred Option ..... 56
7 CONCLUSIONS ..... 61

## Tables and Figures

Table 2-1 Housing Assumptions in TEMPRO Scenario ..... 6
Table 2-2 Additional Dwellings Assumed for Growth Point Scenario ..... 9
Table 2-3 Morning Peak - Total Person Trips ..... 11
Table 2-4 Evening Peak - Total Person Trips ..... 11
Table 3-1 Morning Peak - Total Person Trips ..... 17
Table 3-2 Evening Peak - Total Person Trips ..... 18
Table 4-1 Morning Peak - Comparison of Total Distance Travelled (person-kilometres) ..... 20
Table 4-2 Evening Peak - Comparison of Total Distance Travelled (person-kilometres) ..... 21
Table 4-3 Morning Peak - Comparison of Total Travel Time (person-hours) ..... 22
Table 4-4 Evening Peak - Comparison of Total Travel Time (person-hours) ..... 23
Table 4-5 Highway Network Performance Statistics (Simulated Area)- Base Year Model ..... 24
Table 4-6 Morning Peak - Summary of Highway Network Performance (Simulated Area) ..... 25
Table 4-7 Evening Peak - Summary of Highway Network Performance (Simulated Area) ..... 26
Table 4-8 Morning Peak - Summary of Highway Network Performance (entire model) ..... 28
Table 4-9 Evening Peak - Summary of Highway Network Performance (entire model) ..... 29
Table 4-10 Morning Peak - Emissions Summary (all values in kg) ..... 30
Table 4-11 Evening Peak - Emissions Summary (all values in kg) ..... 30
Table 5-1 Selected Link Flows - No ODR - AM Peak - pcu per hour ..... 34
Table 5-2 Select Link Flows - ODR West - AM Peak - pcu per hour ..... 36
Table 5-3 Select Link Flows - ODR East - AM Peak - pcu per hour ..... 38
Table 5-4 Selected Link Flows - No ODR - PM Peak - pcu per hour ..... 40
Table 5-5 Select Link Flows - ODR West - PM Peak - pcu per hour ..... 42
Table 5-6 Select Link Flows - ODR East - PM Peak - pcu per hour ..... 44
Table 5.7 AM Comparison: West ODR - NO ODR ..... 46
Table 5.8 AM Comparison: East ODR - NO ODR ..... 46
Table 5.9 PM Comparison: West ODR - NO ODR ..... 46
Table 5.10 PM Comparison: East ODR - NO ODR ..... 47
Table 5-11 AM Peak - Comparison of Journey Times ..... 49
Table 5-12 PM Peak - Comparison of Journey Times ..... 50
Table 5-13 Comparison of Modelled Journey Times on A49 - AM Peak ..... 51
Table 5-14 Comparison of Modelled Journey Times on A49-PM Peak ..... 52
Table 5-15 Over Capacity Junctions - AM Peak ..... 53
Table 5-16 Over Capacity Junctions - PM Peak ..... 53
Table 5-17 Over Capacity Junctions - Both Peaks ..... 53
Table 6-1 Total Costs of Travel - No ODR ..... 55
Table 6-2 Total Costs of Travel - ODR West ..... 56
Table 6-3 Total Costs of Travel - ODR East ..... 56
Table 6-4 Over-Capacity Junctions - East ODR vs No ODR - Option 3 ..... 58
Table 6.5 Recommended Options ..... 60
Figure 1-1 Highway Model Coverage .....  4
Figure 2-1 Outline Methodology .....  5
Figure 2-2 - Locations of TEMPRO Housing Sites ..... 7
Figure 2-3 Locations of Proposed Development Sites ..... 10
Figure 2-4 Indicative Alignment of Western ODR ..... 14
Figure 2-5 Indicative Alignment of Eastern ODR ..... 14
Figure 4-1- Time Spent in Over-Capacity Queues (AM Peak) / Hours ..... 27
Figure 4-2 - Time Spent in Over-Capacity Queues (PM Peak) / Hours ..... 27
Figure 5-1 Site Locations for Flow Comparison ..... 33
Figure 5-2 Journey Time Route Locations ..... 48
Figure 5-3-A49 journey time route ..... 51
Figure 6-1- Changes in Flow (ODR East vs No ODR, Demand Option 3) - AM Peak ..... 57
Figure 6-2 - Changes in Flow (ODR East vs No ODR, Demand Option 3) - PM Peak ..... 57
Figure 6-3 : Junctions operating at $>85 \%$ of capacity - AM Peak. ..... 58
Figure 6-4 - Junctions operating at >85\% of capacity - PM Peak ..... 59

## Appendices

APPENDIX A Glossary
APPENDIX B Growth Factors
APPENDIX CLink Flows
APPENDIX D Stress (Volume/Capacity)
APPENDIX E Link Speed
APPENDIX F ODR Impact Calculation
APPENDIX GRank Calculation

## Executive Summary

## Background to the study

1.2 This study, commissioned by Herefordshire Council (HC) and the Highways Agency (HA), examines the implications of potential housing development up to 2026 as proposed in the Regional Spatial Strategy (RSS) and its impact on the road network within Hereford and its surrounding area.

## What growth options and transport interventions have been tested?

1.3 Five growth options have been considered. The first uses the TEMPRO forecasts to predict changes in travel demand. The forecasts were modified slightly to take account of committed developments. The remaining growth options add additional trips to the TEMPRO forecasts to take account of additional housing proposed as part of the Government's Growth Point agenda. Four different distributions of housing allocations have been tested.
1.4 The impact of these additional trips on the highway network has been considered. An Outer Distributor Road (ODR) is proposed in order to alleviate some of the problems, in terms of network stress and congestion, which these additional trips could cause. Two general alignments for the ODR are tested and compared to a situation without the road.

## The study's overall objectives

1.5 The objectives of the study can be summarised as follows:

- Determine the impact of national transport demand forecasts on the operation of the Hereford highway network;
- Investigate the effects of the additional housing requirements, and their allocations, on the operation of the highway network;
- Provide details of any relief to congestion provided by an Outer Distributor Road (ODR) running either to the west or to the east of the city;
- Identify areas of capacity constraint in terms of delay;
- Evaluate and compare network conditions under each scenario; and
- Assess the level of stress on the network in terms of network operation parameters and link flows.


## The methodology adopted

1.6 Each modelled scenario has been assessed in terms of;

- Flow Relief - the number of vehicles using a particular stretch of road per hour. This indicates how busy a road is or the extent to which it is a popular route.
- Stress (Volume/Capacity) - is the traffic flow using a junction divided by the nominal capacity of the junction. Junctions at $85 \%$ of capacity and above are considered to be at critical usage and are likely to cause significant delays to vehicles using them.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | 1 |

- Link speed - speeds on links are affected by the level of traffic using the link and the operation of the junction at the end of the link. By assessing link speeds, it is possible to determine where congestion problems are likely to occur and to see what impacts the various scenarios have on network operation.


## Findings - what are the impacts on the Local Highway Network?

1.7 The results of the model runs reveal the trips associated with the additional housing have a significant detrimental effect on the operation of the Hereford highway network. Many junctions are forecast to be operating beyond their capacities, link speeds are reduced and delays are commonplace.
1.8 Adding an Outer Distributor Road, on either alignment, is forecast to provide some relief from the adverse effects. The resulting network operation would be similar to that if the additional trips had not been introduced.
1.9 Of the four possible Growth Point housing and employment options, it is found that Option 3 (NorthSouth focused) together with the ODR on the Eastern Alignment provides the lowest overall cost of travel within the highway network model.

## 1 Introduction

1.10 JMP Consultants Limited has been appointed by Herefordshire Council and the Highways Agency to undertake a study to determine the impacts on the local highway network of proposed housing development, and to determine whether the impacts on future highway conditions can be alleviated by implementation of the proposed Outer Distributor Road. A further consideration is which of two possible routes for the Outer Distributor Road provides the greater alleviation of capacity problems in the future.
1.11 The various options have been tested using JMP's recalibrated and revalidated Hereford MultiModal Model (2008). The model contains a representation of the transport system within Herefordshire by all modes of transport. A SATURN-based highway model contains a representation of the main roads within Hereford together with the strategic road network of Herefordshire.
1.12 The Multi-Modal Model is based on three time periods; AM Peak (8am to 9am), an average Inter Peak hour (nominally 11 am to midday) and the PM Peak ( 5 pm to 6 pm ). For the current forecasting, however, only the AM and PM peak models were used.
1.13 The methodology used to test the various options uses the principles outlined in WebTAG to estimate changes in demand for travel by all modes in response to changes in the costs of travel by all modes. The methodology has been approved by Herefordshire Council's modelling advisors, Transport Planning International (TPi).
1.14 Appendix $\mathbf{A}$ is the glossary for this project, which provides a definition of the software and the terminology used throughout.
1.15 The extent of the highway model is shown in Figure 1-1 below. As can be seen, the model is focussed upon Hereford. Main roads leading to Hereford from the rest of Herefordshire are also included.

Figure 1-1 Highway Model Coverage


## Summary of the objectives

The objectives of the study can be summarised as follows:

- Determine the impact of national transport demand forecasts on the operation of the Hereford highway network;
- Investigate the effects of the additional housing requirements, and their allocations, on the operation of the highway network;
- Provide details of any relief to congestion provided by an Outer Distributor Road (ODR) running either to the west or to the east of the city;
- Identify areas of capacity constraint in terms of delay;
- Evaluate and compare network conditions under each scenario; and
- Assess the level of stress on the network in terms of network operation parameters and link flows.


## Report Structure

1.17 Following this introductory section, Section 2 describes the forecasting methodology used; Section 3 provides results of the mode-choice model; Section 4 provides headline statistics for each modelled option, Section 5 discusses the operation of the highway network in terms of flow relief, stress and average speed and junction delay, Section 6 outlines how the preferred option was chosen and Section 7 summarises the conclusions to be drawn.

| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| 4 | MID2517-A | 1 | 4 a | Hereford Multi-Modal Model |

## 2 Forecasting Methodology

## Overview

2.18 Forecasts for a single future year of 2026 are required for the two time periods (AM and PM peak hours) in order to assess the likely impact of the proposed housing and employment developments upon the road network of Hereford. At the request of the client, the DIADEM program was used to forecast the changes in demand caused by the changes in highway infrastructure.

Five development scenarios have been tested:

- 2026 Do-Minimum Scenario: Comprises of the 2008 Baseline factored to 2026 using TEMPRO growth factors.
- 2026 Do-Something 1, 2, 3 and 4 Scenarios: Comprises of the 2026 Do Minimum Scenario with 605,000 sqm of employment / retail / office space and 8,300 additional dwellings in Hereford, and further 9,500 dwellings elsewhere in the county, with each Do Something development scenario having alternative locations for these dwellings.

For each development option, there will be three network infrastructure scenarios as follows:

- No Outer Distributor Road (ODR)
- ODR on Western alignment
- ODR on Eastern alignment
2.21 The forecasting methodology has been developed in consultation with the Council's modelling advisors, Transport Planning International.


## Outline Methodology

Figure 2-1 shows the outline methodology used in the forecasting model.
Figure 2-1 Outline Methodology


More details on the forecasting methodology are provided in the sections that follow.

## Future Year Demand Matrices

## Do-Minimum Scenario

The Future-Year demand matrices were built by factoring the base-year demand matrices, by time period and by mode, and then by adding trips associated with the proposed developments.

TEMPRO version 5.4 was used to provide zonal growth factors to update the base-year matrices to the forecast year of 2026. TEMPRO provides growth factors by time period and by mode (car driver, car passenger, bus, train, cycle and walk). The TEMPRO growth factors are shown in Appendix B.

In the Hereford Model, a single Public Transport model incorporates travel by bus and by train. In the Base Year model, many more trips are made by bus than train, so the growth factors for bus have been used to factor the Base Year public transport matrices.

Each of the zones of the transport model was allocated to one of the TEMPRO zones using GIS, thereby identifying the growth factors to be applied to each zone.

By applying the TEMPRO growth factors to the row and column totals from the base-year matrices, a set of future-year trip-ends were produced. These were then used by the TRIPS program MVGRAM to apply growth to the base-year matrices. The resulting matrices, therefore, contained the appropriate number of trips and the distribution of the trips was similar to that observed in the base-year matrices.

Growth factors for car passengers were used to estimate the average car-occupancy for the futureyear. The average number of passengers per car trip for the Base Year was estimated from occupancy counts undertaken during the Roadside Interview Survey programme. The number of car drivers and car passengers in the Future Year was then found by applying the appropriate TEMPRO growth factors. Finally, the future year car occupancy was found from the numbers of future year drivers and future year passengers.

As TEMPRO only provides growth factors for TEMPRO zones, which are generally much larger than the model's zones, it is necessary to then adjust the TEMPRO growth factors in order to take account of committed developments. In such cases, estimates of the number trips associated with each committed development were obtained. The TRICS database was used to estimate the overall numbers of trips, by time period, entering and exiting the development. Modal splits were then found from the 2001 Census data for the ward containing the committed development. These were used to split the trips across the four modes of transport used in the model. A potential housing option for Hereford based upon Herefordshire Council's emerging Strategic Housing Land Availability Assessment (SHLAA) has been included in the TEMPRO growth scenario, as shown in Table 2-1 below.

Table 2-1 Housing Assumptions in TEMPRO Scenario

| Location | Number of Dwellings in TEMPRO Scenario |
| :---: | :---: |
| Whitecross | 980 |
| Edgar Street Grid | 1000 |
| Other Urban areas | 500 |
| Total | $\mathbf{2 4 8 0}$ |

[^0]The locations of the TEMPRO housing sites are shown in Figure 2-2 below.

Figure 2-2 - Locations of TEMPRO Housing Sites


The TEMPRO scenario assumes 500 additional houses would be distributed across the existing built-up area of Hereford. As such, the locations of these houses are not shown in the Figure above.

The trips associated with the developments were added to the relevant zones, and then the TEMPRO growth factors were adjusted so that the resulting numbers of trips matched those obtained by applying TEMPRO growth alone. This ensures that the committed development trips are not double-counted - i.e. the impacts of the developments would have been included in the TEMPRO growth factors and in the direct addition of the development-related trips.

A Park-and-Ride site, with up to 750 spaces, is proposed for the northern edge of Hereford. No current demand forecasts for the usage of the Park-and-Ride facility are available. The impact of the Park-and-Ride facility needed to be reflected in the demand forecasts, however. Therefore, it was assumed that in the AM Peak hour, 250 car users would chose to Park-and-Ride. 250 trips in the AM car matrix were identified as being likely to use a Park-and-Ride, as their origins were north of the site and their destinations were in the city centre. These trips were then moved in the demand matrix so that the car trips were between the original origin and the Park-and-Ride site. Similarly, additional trips, with their origins at the Park-and-Ride site and their destinations in the city centre, were added into the public transport matrix. For the PM peak, it was assumed that 250 car users would use the Park-and-Ride site in the outbound direction. The car and public transport matrices were altered accordingly.

This completed the building of the Do-Minimum, or TEMPRO Growth, demand matrices.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | 7 |

## Do-Something Scenarios

For the Growth Point matrices, the trips associated with the additional housing and employment sites need to be included, as the impacts of these developments would not have been included in the TEMPRO forecasts.
2.37 Four distributions of the housing and employment sites have been developed by Herefordshire Council, based on the emerging SHLAA. These are known as the Do-Something development options and are denoted as DS1, DS2, DS3 and DS4.
2.38 Consequentially within the city of Hereford and the county of Herefordshire, the following sites, shown in Table 2-2 below, have been identified.

Table 2-2 Additional Dwellings Assumed for Growth Point Scenario

| Housing options |  | DM | DS1 (North / West focus) | DS2 (South / West focus) | DS3 <br> (North / South focus) | DS4 <br> (Dispersed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hereford | Edgar St Grid | 1000 | 1000 | 1000 | 1000 | 1000 |
|  | Whitecross | 980 | 2000 | 2000 |  | 1500 |
|  | Three Elms Road / Kings Acre |  | 2000 | 1500 | 2500 | 1500 |
|  | Bullinghope |  |  | 1000 | 1000 | 1000 |
|  | Holmer West |  | 500 |  | 500 | 500 |
|  | Holmer East |  |  |  | 500 |  |
|  | Other SHLAA Citywide distribution | 500 | 1009 | 1009 | 1009 | 1009 |
|  | Total | 2480 | 6509 | 6509 | 6509 | 6509 |
| County (06 to 08) | Built/Com Dev | 1091 | 1091 | 1091 | 1091 | 1091 |
| Herefordshire | Other Urban Area Outer Hereford |  | 1714 | 1714 | 1714 | 1714 |
|  | Rural Herefordshire |  | 3070 | 3070 | 3070 | 3070 |
|  | Market Towns |  | 3625 | 3625 | 3625 | 3625 |
|  | Total |  | $\begin{gathered} 8409 \\ (9,500) \end{gathered}$ | $\begin{gathered} 8409 \\ (9,500) \end{gathered}$ | $\begin{gathered} 8409 \\ (9,500) \end{gathered}$ | $\begin{gathered} \hline 8409 \\ (9,500) \end{gathered}$ |
|  | Grand Total | 2480 | $\begin{gathered} 14,918 \\ (17,800) \end{gathered}$ |
| Employment Options |  |  |  |  |  |  |
| Hereford | Retail Comparison Edgar St Grid |  | $\begin{gathered} 60,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 60,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 60,000 \\ \text { sqm } \end{gathered}$ | 60,000 sqm |
|  | Office - Edar St Grid |  | $\begin{gathered} 45,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 45,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 45,000 \\ \text { sqm } \end{gathered}$ | 45,000 sqm |
|  | Holmer East |  | $\begin{gathered} 150,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 150,000 \\ \text { sqm } \end{gathered}$ |  | 150,000 sqm |
|  | Rotherwas |  | $\begin{gathered} 250,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 250,000 \\ \mathrm{qm} \end{gathered}$ | $\begin{gathered} 300,000 \\ \text { sqm } \end{gathered}$ | 250,000 sqm |
|  | Roman Road |  | $\begin{gathered} 100,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 100,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 150,000 \\ \text { sqm } \end{gathered}$ | 100,000 sqm |
|  | Grand Total |  | $\begin{gathered} 605,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} 605,000 \\ \text { sqm } \end{gathered}$ | $\begin{gathered} \text { 555,000 } \\ \text { sqm }^{*} \end{gathered}$ | $\begin{gathered} 605,000 \\ \text { sqm } \end{gathered}$ |

Supplied by Herefordshire Council - *assumes 5ha of additional employment land is found within city
2.39 The development site locations are shown in Figure 2-3.

Figure 2-3 Locations of Proposed Development Sites


## Herefordshire Council

2.40 These assumptions give 4,029 additional dwellings in the city in addition to those forecast by TEMPRO. The trips associated with these dwellings were forecast in the same way as in the DoMinimum matrices.
2.41 Reflecting past trends, a further 1,714 dwellings are assumed to be built in zones just outside the existing built-up area of Hereford. Trips associated with these zones were forecast in the same way as in the Do-Minimum matrix building, and added to the Growth Point matrices.
2.42 Again based on past trends, 3,070 dwellings are assumed to be distributed across the zones covering the rural areas of Herefordshire. For these zones, the TEMPRO growth factors were adjusted in line with the additional housing to provide a set of adjusted growth factors.
2.43 Finally again based on past trends and reflecting the emerging SHLAA sites, 3,625 dwellings are assumed to be distributed across the market towns in Herefordshire (Leominster, Ross, Ledbury, Bromyard and Kington). Each of the market towns is allocated to a single zone in the transport model, so the growth factors for these zones were adjusted in line with the additional housing.
2.44 The Growth Point matrices were adjusted to take account of the Park-and-Ride site in the same way as the TEMPRO Growth matrices.
2.45 The outputs of the matrix building process were five sets of matrices; a Do-minimum set corresponding to the situation where growth forecast by TEMPRO is achieved, taking into account the locations of various specified developments; and four different Growth Point sets, where the

| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| 10 | MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

TEMPRO growth is supplemented by additional trips associated with the identified additional housing and employment sites.

The numbers of trips in each matrix are shown in Table 2-3 and Table 2-4 below.
Table 2-3 Morning Peak - Total Person Trips

| Mode | Base | DM | DS1 | DS2 | DS3 | DS4 |
| :--- | ---: | :---: | :---: | :---: | ---: | ---: |
| Car | 19,921 | 21,725 | 27,059 | 27,129 | 27,030 | 27,178 |
| PT (Bus + Rail) | 3,005 | 3,168 | 3,503 | 3,478 | 3,385 | 3,447 |
| Cycle | 850 | 825 | 1,177 | 1,152 | 1,165 | 1,140 |
| Walk | 6,043 | 5,946 | 6,510 | 6,492 | 6,637 | 6,487 |
| Total | $\mathbf{2 9 , 8 1 8}$ | $\mathbf{3 1 , 6 6 4}$ | $\mathbf{3 8 , 2 4 9}$ | $\mathbf{3 8 , 2 5 1}$ | $\mathbf{3 8 , 2 1 7}$ | $\mathbf{3 8 , 2 5 2}$ |

Table 2-4 Evening Peak - Total Person Trips

| Mode | Base | DM | DS1 | DS2 | DS3 | DS4 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Car | 21,053 | 23,357 | 28,077 | 28,140 | 28,068 | 28,183 |
| PT (Bus + Rail) | 2,025 | 2,271 | 2,569 | 2,548 | 2,468 | 2,520 |
| Cycle | 863 | 861 | 1,176 | 1,154 | 1,166 | 1,144 |
| Walk | 8,365 | 8,673 | 9,175 | 9,159 | 9,287 | 9,154 |
| Total | $\mathbf{3 2 , 3 0 6}$ | $\mathbf{3 5 , 1 6 2}$ | $\mathbf{4 0 , 9 9 7}$ | $\mathbf{4 1 , 0 0 1}$ | $\mathbf{4 0 , 9 8 9}$ | $\mathbf{4 1 , 0 0 1}$ |

2.49 As can be seen, there are many more trips in the Growth Point (DS) matrices than in the DoMinimum matrices, as would be expected. The matrices for the Do-Something options all contain a similar number of trips. Do-Something option 3 contains slightly fewer trips as, for this option, 5ha of employment is assumed to be found across the city of Hereford, rather than in a specified location. This results in some trips associated with the 5ha of employment land being inter-zonal (i.e. the origin and destination of the trip is same zone), and therefore these trips are not included in the matrix totals. The difference is minor, however, with the DS3 matrices containing only about 30 fewer trips than the other options in the AM Peak, and only 13 fewer in the PM.
2.50 For LGV and HGV trips, the forecast year demand matrices were found by applying the NTM growth factors to the base-year matrices. The same LGV and HGV matrices were used in all the growth scenarios. The factors used were 1.50 for LGV trips and 1.16 for HGV trips.

## Future-Year Transport Networks

## 2026 Do-Minimum (DM) Scenario

The Do-Minimum networks represent a future situation where only committed transport schemes are implemented. The transport schemes to be included in the Do-Minimum networks, therefore, were derived in consultation with Herefordshire Council.

## Highway Model

The Do-Minimum 2026 highway network adds the following schemes to the Base Year networks;

- Edgar Street Grid (ESG) highway works
- A Park-and-Ride site located close to Hereford Racecourse, with access taken from a signalised junction on the A4103 (Roman Road).
- Access to new housing development at Whitecross, identified in the Do-Minimum housing scenario.

The ESG proposal includes a new link road running between Commercial Road and Edgar Street. A drawing of the latest proposals for this link was used to code the new route into the SATURN model. The proposals also include the modification of a section of the Inner Ring Road (Blue School Street and Newmarket Street) to make it more pedestrian friendly. This was coded by reducing the coded link speed to 20 kph and reducing the capacity of the associated links to 800 pcu/hour each way. The roundabout junctions on Newtown Road were modified slightly, in order to provide slightly more capacity.

The access to a potential housing site at Whitecross was coded. It was assumed that the housing would be accessed from a new junction on Kings Acre Road, close to the existing junction with Huntington Lane. Likewise, a new signalised junction was added to Roman Road to give access to the proposed Park-and-Ride site.

As recommended in the SATURN documentation, the signal optimisation routine with the SATURN program was used to determine appropriate settings for the traffic signals in the Future Year networks. This ensures that the signal settings in the model are appropriate for the anticipated traffic flows, whilst maintaining the present day inter-green times.

## Public Transport model

The public transport network was updated by adding the Edgar Street Grid highway works and the access to the Whitecross housing site. No further changes were made.

The public transport lines were assumed to be unchanged from the base-year case. It was assumed that bus fares would rise in line with forecast growth in GDP per capita. WebTAG acknowledges that forecasting changes to bus fares is difficult, so it was assumed that the fares would rise in line with GDP per capita as this acts as a proxy for rises in average incomes, including the incomes of those employed by the bus operators.

Rail and coach fares were assumed to rise at a rate of $1 \%$ per annum in real terms as growth in regulated rail fares is capped at $1 \%$ per annum by the DfT and it was assumed that coach fares would grow at a similar rate, as coach travel is usually in competition with rail for inter-urban journeys.

| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| 12 | MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

## Cycle Model

The Edgar Street Grid works and the access to the housing site at Whitecross were incorporated into the future year cycle model. No other changes were made.

## Walk Model

Likewise, the Edgar Street Grid works and the Whitecross access were incorporated into the Walk model.

Do-Something (DS) Scenarios
Highway Model
The various Do-Something networks were created by adapting the Do-Minimum networks.
The Do-Something networks included accesses to the possible housing and employment sites as follows;

- The Roman Road employment site was assumed to be accessed from a new junction on Roman Road, approximately 1 km east of the Stretton Sugwas roundabout;
- The Holmer West housing site was assumed to be accessed via the proposed signalised junction on Roman Road, opposite Hereford Racecourse;
- The Holmer East housing / employment site was assumed to be accessed via a new junction on Roman Road, located between the College Road junction and the railway bridge.
- The Three Elms housing site was assumed to be accessed via a roundabout junction on Three Elms Road, replacing the existing junction with Grandstand Road; and from a new junction on Kings Acre Road. In the scenario with the Western Outer Distributor Road in place, a junction on the ODR would give access to the site in place of the junction on Three Elms Road;
- The Bullinghope housing site was assumed to be accessed from a new junction on the Rotherwas Access Road;
- The Rotherwas employment site was assumed to be accessed from a new junction on the B4399 (The Straight Mile), east of the junction with the Rotherwas Access Road.

For each development scenario, the relevant accesses were incorporated into the model networks.
Separate Do-Something networks were created to represent the situations with two possible alignments of the ODR: the ODR on a western alignment and the ODR on an eastern alignment.

The new roads were assumed to be 7.3 m single carriageways with an unrestricted speed limit. Roundabout junctions were coded at the points where the new roads intersected the main roads of the existing network. It is acknowledged that the final arrangements for such junctions are not decided. Roundabouts were coded in order to provide a suitable junction, without having to determine signal settings, number of lanes, etc. Each roundabout was coded as having a two-lane circulatory carriageway and two-lane entries. Again, these are just assumptions and do not imply that the actual road should have such junctions. The final layouts of the junctions would be developed as the planning of the road progress.

The indicative alignments of the two options for the Outer Distributor Road are shown in Figures Figure 2-4 and Figure 2-5 below.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | 13 |

Figure 2-4 Indicative Alignment of Western ODR


Figure 2-5 Indicative Alignment of Eastern ODR


In total, fifteen different Future Year networks were created for each modelled time period, representing all possible combinations of development options (Do-Minimum, Do-Somethings 1 to 4) and network infrastructure options (Do-Minimum (No ODR), West ODR and East ODR).

## Public Transport Networks

The new roads were added to the public transport networks. No changes to public transport services were made.

## Walk and Cycle Networks

The new roads were also added to both the cycle and walk networks. No other changes were made to the models for these modes.

## Initial Assignments

For the public transport, cycle and walk modes, the reference case matrices were assigned to the corresponding networks and a set of future-year cost skims were produced. These are required as an input to DIADEM.

DIADEM only can estimate mode-split between car and a single alternative mode, known as "PT" in DIADEM. In the case of the Hereford model, it is necessary for DIADEM to estimate the mode split between car and the three non-car modes. Therefore, it is necessary to supply a set of non-car costs, made up of the costs of travel by the three non-car modes. The minimum of the public transport, cycle and walk costs was used. This ensures that the when the mode-choice calculations are performed, travel by car is compared to the best option of the three non-car modes. In order to prevent the mode-choice model producing unrealistically long walk and cycle trips, in cases where the walk or cycle travel time was over 60 minutes, only the public transport travel time was used.

## DIADEM

The DIADEM program requires the following inputs;

- Reference Case car demand
- Reference Case non-car demand, split by car availability
- Reference Case car costs
- Reference Case non-car costs
- Forecast non-car costs

DIADEM then estimates changes to the Forecast Year demand matrices. In this case, DIADEM models the mode-choice of those with a car-available and the destination choice of all users, in response to changes in the highway network. In essence, if highway conditions worsen, users will respond by choosing to travel to closer destinations or by shifting to an alternative mode.

As no surveys had been undertaken to determine the likely responses to changed travelling conditions, the following parameters, taken from WebTAG Unit 3.10.3, were used in DIADEM

- Mode Split scaling parameter 0.85
- Highway destination choice sensitivity -0.16
- Public transport destination choice sensitivity -0.05 .

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

At the end of the DIADEM run, the final SATURN highway assignment is available for inspection. The matrices of demand for the non-car modes, split by car-availability, are produced. These matrices are then split across the three non-car modes using an incremental mode-choice model. This is not strictly in line with WebTAG guidance. WebTAG proposes that destination-choice is performed after mode-choice in the model hierarchy. In the DIADEM model, the destination-choice is indeed performed after the choice of mode, but the choice of mode is only between „car' and „non-car'. The mode-choice between the non-car modes is necessarily performed after the DIADEM model has performed destination choice. This may give rise to slightly unrealistic splits between the non-car modes. As these tests are primarily concerned with the impacts on the highway network, the split between the non-car modes are of lower importance. If, however, the model is to be used to forecast the impacts of improvements to the non-car modes, the demand modelling will have to be modified. It will be necessary to dispense with the use of DIADEM and use a custom-built model that can perform the split between all four modes of transport before modelling any changes in trip-distributions.
2.79 The resulting non-car matrices were then assigned to the corresponding networks to produce the final public transport, cycle and walk assignments.

## 3 Modal Split

3.80 As mentioned previously, the reference forecast demand matrices for each scenario are developed using growth factors from TEMPRO and from assumptions regarding future housing and employment developments. The model includes a demand model, containing a DIADEM modechoice component, which allows modal shift and results in a set of new demand matrices which may be different from the reference matrices. Thus, a new demand matrix for each modelled mode (i.e. car, public transport, cycle and walk) is obtained after running the demand model for each scenario. The new demand matrices are then assigned to the respective network to produce the forecasts of travelling conditions under each scenario.
3.81 Table 3-1and Table 3-2 show the final forecast person trip totals for car, public transport, cycle and walk demand matrices obtained from demand model for each modelled scenario for the AM and PM Peak models respectively. For comparison, the total trips from the validated AM and PM Base Year models are also included.

Table 3-1 Morning Peak - Total Person Trips


Table 3-2 Evening Peak - Total Person Trips

3.82 Comparison of the No-ODR Do-Minimum trip totals with those of the Base Year shows how demand for travel is forecast to change by application of the TEMPRO forecasts. For example, in the AM Peak, demand for travel is forecast to rise by $6.2 \%$. This increase is not uniform across all modes, however. Demand for travel by car is forecast to rise by 9.6 , whilst travel by public transport is forecast to fall by 7\%. A similar pattern is seen in the PM Peak, with demand for travel forecast to rise by $8.9 \%$ - car travel is forecast to rise by $11.3 \%$, with public transport use falling by $0.7 \%$.
3.83 The tables show how overall demand does not change significantly in response to the provision of either alignment of the ODR. This is as expected, as the guidance in WebTAG states that overall trip-making, when all modes are considered, does not usually alter in response to altered travelling conditions. The same numbers of trips are assumed to be made, but the mode used or the destination chosen may change. The slight differences in matrix totals are due to rounding errors in the matrix calculations.
3.84 Recall that Table 2-3 and Table 2-4 show the forecast total demand by mode as forecast by TEMPRO, under the assumption that travel costs do not change from those of the Base Year.

These are known as the Reference Case demands. The figures in Table 3-1 and Table 3-2 show the forecast demands after the application of the changes in costs due to the forecast levels of congestion on the network as well as changes in public transport fares, vehicle operating costs (including the cost of fuel) and Values of Time.

In the situation without an ODR and with only the TEMPRO demand, the model predicts a slight shift away from public transport, with the trips transferring to the car and walk modes. This is not unexpected, as the forecast costs of public transport are expected to increase due to increased congestion leading to increased journey times, fares are forecast to increase and traveller's value of time is forecast to grow. All these factors lead to public transport costs increasing at a rate higher than that for the other modes. As the proportion of travellers with a car available is also forecast to increases, it is not surprising that public transport usage is forecast to fall. The fall in public transport usage is accompanied by a complementary increase in usage of the other modes.

With the additional demand associated with the Do-Something options and no ODR, a shift away from car observed as well as the shift away from public transport. These trips transfer to the walk and cycle modes.

The provision of an ODR, on either alignment, leads to a shift of demand towards car and tends to increase the fall in demand for public transport. The travel times by cycle, for some trips, are reduced by the inclusion of an ODR, as the ODR provides another crossing of the River Wye, thereby shortening the travel distance between certain areas. For example, provision of the Eastern ODR reduces the travel distance between the Hampton Park residential area and the Rotherwas employment area, cycling (and walking to a lesser extent) a realistic option for trips between these areas.

## 4 Model Performance Statistics

The comparison of total distance travelled within the modelled network (Herefordshire County) for the AM model is shown in Table 4-1.

Table 4-1 Morning Peak - Comparison of Total Distance Travelled (person-kilometres)

| Scheme | Mode | Sub-Mode | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | PT | Bus | 7,480 | 8,433 | 8,363 | 8,093 | 8,317 |
|  |  | Coach | 396 | 417 | 405 | 420 | 401 |
|  |  | Rail | 27,022 | 27,811 | 27,718 | 27,883 | 27,664 |
|  |  | Sub-Total | 34,899 | 36,661 | 36,486 | 36,396 | 36,382 |
|  | Cycle |  | 1,629 | 2,582 | 2,537 | 2,354 | 2,478 |
|  | Walk |  | 9,953 | 11,666 | 11,591 | 11,803 | 11,579 |
|  | Total |  | 46,481 | 50,909 | 50,614 | 50,553 | 50,439 |
|  |  |  |  |  |  |  |  |
| Western ODR | PT | Bus | 7,389 | 8,195 | 8,169 | 7,918 | 8,114 |
|  |  | Coach | 388 | 399 | 396 | 408 | 393 |
|  |  | Rail | 26,728 | 27,563 | 27,506 | 27,605 | 27,446 |
|  |  | Sub-Total | 34,505 | 36,157 | 36,071 | 35,932 | 35,953 |
|  | Cycle |  | 1,608 | 2,516 | 2,482 | 2,332 | 2,425 |
|  | Walk |  | 9,868 | 11,440 | 11,412 | 11,662 | 11,397 |
|  | Total |  | 45,981 | 50,113 | 49,965 | 49,926 | 49,775 |
|  |  |  |  |  |  |  |  |
| Eastern ODR | PT | Bus | 7,336 | 8,141 | 8,088 | 7,891 | 8,038 |
|  |  | Coach | 412 | 442 | 439 | 418 | 435 |
|  |  | Rail | 26,458 | 27,356 | 27,290 | 27,238 | 27,240 |
|  |  | Sub-Total | 34,206 | 35,939 | 35,817 | 35,547 | 35,712 |
|  | Cycle |  | 1,573 | 2,433 | 2,395 | 2,285 | 2,340 |
|  | Walk |  | 9,817 | 11,388 | 11,336 | 11,604 | 11,321 |
|  | Total |  | 45,596 | 49,760 | 49,548 | 49,436 | 49,373 |

4.91 For the non-car modes, it can be seen that the addition of an ODR, on either alignment, leads to slight fall in the distance travelled by public transport and by cycle. The changes in distance travelled by foot are insignificant.
Model performance statistics were collected for all modes after assigning the demand matrices obtained from the demand model.

## Non-Highway Models

The following service indicators are used to assess the PT, cycle and walk model performance:

- Total Distance (measured in person-kilometres)
- Total Time (measured in person-hours)

The comparison for the PM model is shown in Table 4-2.

Table 4-2 Evening Peak - Comparison of Total Distance Travelled (person-kilometres)

| Scheme | Mode | Sub-Mode | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | PT | Bus | 6,080 | 7,252 | 7,186 | 6,867 | 7,165 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 13,714 | 14,852 | 14,740 | 14,643 | 14,686 |
|  |  | Sub-Total | 19,794 | 22,103 | 21,925 | 21,509 | 21,851 |
|  | Cycle |  | 1,728 | 2,626 | 2,585 | 2,386 | 2,546 |
|  | Walk |  | 13,812 | 15,298 | 15,273 | 15,372 | 15,288 |
|  | Total |  | 35,334 | 40,027 | 39,783 | 39,267 | 39,685 |
|  |  |  |  |  |  |  |  |
| Western ODR | PT | Bus | 5,656 | 6,656 | 6,644 | 6,384 | 6,605 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 13,721 | 14,793 | 14,728 | 14,635 | 14,662 |
|  |  | Sub-Total | 19,377 | 21,449 | 21,372 | 21,019 | 21,266 |
|  | Cycle |  | 1,660 | 2,507 | 2,470 | 2,318 | 2,435 |
|  | Walk |  | 13,614 | 15,037 | 15,057 | 15,171 | 15,037 |
|  | Total |  | 34,651 | 38,993 | 38,899 | 38,508 | 38,738 |
|  |  |  |  |  |  |  |  |
| Eastern ODR | PT | Bus | 5,810 | 6,747 | 6,705 | 6,530 | 6,659 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 13,475 | 14,604 | 14,505 | 14,478 | 14,359 |
|  |  | Sub-Total | 19,286 | 21,351 | 21,210 | 21,009 | 21,018 |
|  | Cycle |  | 1,645 | 2,405 | 2,365 | 2,235 | 2,330 |
|  | Walk |  | 13,594 | 14,933 | 14,923 | 15,079 | 14,924 |
|  | Total |  | 34,525 | 38,689 | 38,498 | 38,323 | 38,272 |

As in the AM Model, it can be seen that in the PM model, the addition of an ODR leads to a slight fall in passenger kilometres for the public transport and cycle modes. There is also a slight fall in the distance travelled by foot.
4.94 Table 4-3 and Table 4-4 show the comparison of total travel time by non-car modes across the scenarios and time periods.

Table 4-3 Morning Peak - Comparison of Total Travel Time (person-hours)

| Scheme | Mode | Sub-Mode | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | PT | Bus | 542 | 614 | 611 | 584 | 606 |
|  |  | Coach | 6 | 6 | 6 | 6 | 6 |
|  |  | Rail | 303 | 313 | 312 | 313 | 311 |
|  |  | Sub-Total | 850 | 933 | 928 | 902 | 922 |
|  | Cycle |  | 109 | 172 | 169 | 157 | 165 |
|  | Walk |  | 2,488 | 2,917 | 2,898 | 2,951 | 2,895 |
|  | Total |  | 3,447 | 4,021 | 3,995 | 4,010 | 3,982 |
| Western ODR | PT | Bus | 536 | 598 | 598 | 572 | 592 |
|  |  | Coach | 6 | 6 | 6 | 6 | 6 |
|  |  | Rail | 300 | 310 | 310 | 310 | 309 |
|  |  | Sub-Total | 842 | 914 | 913 | 888 | 906 |
|  | Cycle |  | 107 | 168 | 165 | 155 | 162 |
|  | Walk |  | 2,467 | 2,860 | 2,853 | 2,916 | 2,849 |
|  | Total |  | 3,416 | 3,942 | 3,932 | 3,959 | 3,917 |
|  |  |  |  |  |  |  |  |
| Eastern ODR | PT | Bus | 534 | 596 | 593 | 572 | 587 |
|  |  | Coach | 6 | 6 | 6 | 6 | 6 |
|  |  | Rail | 296 | 307 | 306 | 305 | 306 |
|  |  | Sub-Total | 836 | 909 | 905 | 883 | 899 |
|  |  | Cycle | 105 | 162 | 160 | 152 | 156 |
|  |  | Walk | 2,454 | 2,847 | 2,834 | 2,901 | 2,830 |
|  |  | Total | 3,395 | 3,918 | 3,899 | 3,937 | 3,885 |

Table 4-4 Evening Peak - Comparison of Total Travel Time (person-hours)

| Scheme | Mode | Sub-Mode | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | PT | Bus | 342 | 408 | 405 | 376 | 402 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 147 | 159 | 158 | 157 | 157 |
|  |  | Sub-Total | 489 | 567 | 563 | 533 | 559 |
|  | Cycle |  | 115 | 175 | 172 | 159 | 170 |
|  | Walk |  | 3,453 | 3,825 | 3,818 | 3,843 | 3,822 |
|  | Total |  | 4,057 | 4,567 | 4,553 | 4,535 | 4,551 |
|  |  |  |  |  |  |  |  |
| Western ODR | PT | Bus | 323 | 381 | 380 | 355 | 376 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 147 | 159 | 158 | 157 | 157 |
|  |  | Sub-Total | 470 | 539 | 538 | 512 | 533 |
|  | Cycle |  | 111 | 167 | 165 | 155 | 162 |
|  | Walk |  | 3,404 | 3,759 | 3,764 | 3,793 | 3,759 |
|  | Total |  | 3,984 | 4,466 | 4,467 | 4,459 | 4,455 |
|  |  |  |  |  |  |  |  |
| Eastern ODR | PT | Bus | 332 | 386 | 384 | 363 | 380 |
|  |  | Coach | 0 | 0 | 0 | 0 | 0 |
|  |  | Rail | 144 | 156 | 155 | 155 | 154 |
|  |  | Sub-Total | 477 | 543 | 539 | 518 | 534 |
|  | Cycle |  | 110 | 160 | 158 | 149 | 155 |
|  | Walk |  | 3,398 | 3,733 | 3,731 | 3,770 | 3,731 |
|  | Total |  | 3,985 | 4,436 | 4,428 | 4,437 | 4,420 |

4.95 Again, it can be seen that there is a small reduction in the total travel time for the non-car modes when an ODR is added to each demand scenario.
4.96 The 2026 highway network is capable of handling traffic predicted due to the proposed network improvements. The highway network is congested in 2026, however it is not extremely congested. On the contrary public transport services have not been improved in the future scenarios and the public transport fares have been increased. For this reason minimal modal shift was observed.

## Highway Model

4.97 The highway models have been assessed based on network conditions using such measures as average speed, delays, and queues in the network. In SATURN, time spent in „Transient Queues' is defined as the time spent negotiating a junction when the junction is operating within its capacity. This time includes time spent waiting at red traffic signals, ,geometric delays' at priority junctions and roundabouts (this is the time taken to slow down in order to negotiate the junction safely, and the time needed to accelerate back to a normal cruising speed), and the time spent circulating a roundabout.
4.98 Over-capacity queues are defined as those queues that develop when a junction is operating beyond its capacity. Link delays are delays caused when traffic using a link is such that the speed of that traffic is below the normal cruising speed of the link.
4.99 For comparison purposes, the network summary statistics for the Base Year models are shown in Table 4-5

Table 4-5 Highway Network Performance Statistics (Simulated Area)- Base Year Model

| Indicator | AM Peak | PM Peak |
| :--- | ---: | ---: |
| Total Time / hrs | 1,923 | 2,183 |
| Transient Queues / hrs | 673 | 823 |
| Over Capacity Queues / hrs | 20 | 82 |
| Link Delays / hrs | 31 | 29 |
| Total Distance / km | 61,348 | 63,310 |
| Total Trips Loaded / pcu | 15,802 | 16,414 |
| Average Speed / kph | 31.9 | 29.0 |

source: SATURN Model
4.100 The comparisons of network performance for the AM and PM Future Year models are shown in Table 4-6 and Table 4-7 below.

Table 4-6 Morning Peak - Summary of Highway Network Performance (Simulated Area)

| Scheme | Indicators | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Total Time / hrs | 2,254 | 3,033 | 3,042 | 2,866 | 3,030 |
|  | Transient Queues / hrs | 832 | 1,208 | 1,206 | 1,136 | 1,186 |
|  | Over-Capacity Queues/ hrs | 10 | 155 | 149 | 83 | 161 |
|  | Link Delays / hrs | 43 | 73 | 73 | 66 | 72 |
|  | Total Distance / km | 69,134 | 80,802 | 82,082 | 80,480 | 81,965 |
|  | Total Trips Loaded / pcu | 18,043 | 21,620 | 21,673 | 21,644 | 21,714 |
|  | Average Speed / kph | 30.7 | 26.6 | 27.0 | 28.1 | 27.1 |
|  |  |  |  |  |  |  |
| Western ODR | Total Time / hrs | 2,050 | 2,672 | 2,657 | 2,574 | 2,657 |
|  | Transient Queues / hrs | 634 | 898 | 893 | 875 | 892 |
|  | Over-Capacity Queues/ hrs | 0 | 17 | 9 | 10 | 11 |
|  | Link Delays / hrs | 40 | 93 | 90 | 74 | 88 |
|  | Total Distance / km | 76,309 | 94,366 | 94,570 | 90,735 | 94,672 |
|  | Total Trips Loaded / pcu | 18,099 | 21,767 | 21,802 | 21,750 | 21,842 |
|  | Average Speed / kph | 37.2 | 35.3 | 35.6 | 35.3 | 35.6 |
|  |  |  |  |  |  |  |
| Eastern ODR | Total Time / hrs | 2,017 | 2,614 | 2,643 | 2,516 | 2,624 |
|  | Transient Queues / hrs | 599 | 850 | 866 | 810 | 855 |
|  | Over-Capacity Queues/ hrs | 0 | 17 | 18 | 4 | 10 |
|  | Link Delays / hrs | 62 | 115 | 119 | 93 | 117 |
|  | Total Distance / km | 76,208 | 92,010 | 92,947 | 90,622 | 93,026 |
|  | Total Trips Loaded / pcu | 18,133 | 21,783 | 21,831 | 21,773 | 21,872 |
|  | Average Speed / kph | 37.8 | 35.2 | 35.2 | 36.0 | 35.4 |

Table 4-7 Evening Peak - Summary of Highway Network Performance (Simulated Area)

| Scheme | Indicators | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Total Time / hrs | 2,571 | 3,246 | 3,306 | 3,088 | 3,272 |
|  | Transient Queues / hrs | 1,005 | 1,231 | 1,278 | 1,214 | 1,248 |
|  | Over-Capacity Queues/ hrs | 100 | 324 | 324 | 216 | 324 |
|  | Link Delays / hrs | 43 | 71 | 70 | 65 | 72 |
|  | Total Distance / km | 71,743 | 82,641 | 83,586 | 81,480 | 83,503 |
|  | Total Trips Loaded / pcu | 19,104 | 22,263 | 22,274 | 22,278 | 22,331 |
|  | Average Speed / kph | 27.9 | 25.5 | 25.3 | 26.4 | 25.5 |
|  |  |  |  |  |  |  |
| Western ODR | Total Time / hrs | 2,336 | 2,896 | 3,141 | 2,824 | 2,863 |
|  | Transient Queues / hrs | 796 | 991 | 1,080 | 991 | 977 |
|  | Over-Capacity Queues/ hrs | 28 | 97 | 164 | 95 | 71 |
|  | Link Delays / hrs | 47 | 96 | 119 | 76 | 98 |
|  | Total Distance / km | 81,117 | 97,074 | 101,775 | 93,497 | 97,652 |
|  | Total Trips Loaded / pcu | 19,213 | 22,417 | 22,453 | 22,393 | 22,467 |
|  | Average Speed / kph | 34.7 | 33.5 | 32.4 | 33.1 | 34.1 |
|  |  |  |  |  |  |  |
| Eastern ODR | Total Time / hrs | 2,296 | 2,883 | 2,937 | 2,772 | 2,937 |
|  | Transient Queues / hrs | 763 | 982 | 1,025 | 926 | 1,018 |
|  | Over-Capacity Queues/ hrs | 10 | 87 | 92 | 87 | 91 |
|  | Link Delays / hrs | 65 | 120 | 124 | 103 | 125 |
|  | Total Distance / km | 81,315 | 96,085 | 96,290 | 93,518 | 96,730 |
|  | Total Trips Loaded / pcu | 19,226 | 22,452 | 22,481 | 22,424 | 22,515 |
|  | Average Speed / kph | 35.4 | 33.3 | 32.8 | 33.7 | 32.9 |

4.101 The default Future Year model is the situation with the Do-Minimum demand and the No ODR network. Comparison of the network statistics for this scenario with the Base Year model reveals how the model predicts conditions of the highway network will change if the Growth Point housing and employment sites are not developed and the ODR is not built.
4.102 This comparison reveals a general worsening of travelling conditions, with average speeds falling from 31.9 kph to 30.7 kph in the AM Peak, and from 29.0 kph to 27.9 kph in the PM Peak.
4.103 The „No ODR' rows in each table show how the highway network reacts with the additional trips associated with the additional housing and employment development if the ODR were not to be built. In the AM model, transient queues, over-capacity queues and link delays are all forecast to increase, leading to a fall in average network speeds.
4.104 A similar impact is forecast for the PM Peak. In particular, time spent in over-capacity queues is forecast to increase significantly - for example, with Do-Something demand option 1, time spent in over-capacity queues is forecast to increase from 100 hours to 324 hours.
4.105 Turning to the cases with an ODR in place, it can be seen that there is general reduction in congestion across all Do-Something demand scenarios. In particular, time spent in over-capacity queues reduces when going from a „No ODR' network to either the Western ODR or Eastern ODR network for a particular demand option. This is illustrated in Figure 4-1 and Figure 4-2.

Figure 4-1- Time Spent in Over-Capacity Queues (AM Peak) / Hours


Figure 4-2 - Time Spent in Over-Capacity Queues (PM Peak) / Hours

4.106 It is notable that in each demand scenario, in the AM Peak, either alignment of the ODR is effective in reducing the time wasted in over-capacity queues. In the PM Peak, during which the network is more congested than the AM peak, it is the Eastern ODR that is more effective in reducing overcapacity queues in four of the five demand scenarios.
4.107 Examination of the highway network summary statistics reveals that demand scenario 3, with an ODR on the Eastern alignment, gives the best overall network performance, in terms of total time spent by modelled vehicles in the simulated area. It is noted that the differences between the four development options are not significant. By most measures, however, addition of the Eastern ODR leads to better overall network performance than the Western ODR within the simulated area. The average network speeds with the Western ODR are generally higher than those in the equivalent Eastern ODR network, however.
4.108 Network summary statistics have also been collected for the entire modelled area, i.e. the simulated area covering the city of Hereford and the „buffer' network consisting of the main roads within the county of Herefordshire.
4.109 Summary statistics for the entire network, for the AM Peak, are shown in Table 4-8.

Table 4-8 Morning Peak - Summary of Highway Network Performance (entire model)

| Scheme | Indicators | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Total Time / hrs | 4,202 | 5,393 | 5,411 | 5,173 | 5,403 |
|  | Transient Queues / hrs | 942 | 1,367 | 1,371 | 1,287 | 1,351 |
|  | Over-Capacity Queues/ hrs | 10 | 155 | 149 | 83 | 161 |
|  | Link Delays / hrs * | - | - | - | - | - |
|  | Total Distance / km | 220,437 | 261,445 | 262,870 | 257,934 | 263,156 |
|  | Total Trips Loaded / pcu | 18,043 | 21,620 | 21,673 | 21,644 | 21,714 |
|  | Average Speed / kph | 52.5 | 48.5 | 48.6 | 49.9 | 48.7 |
|  |  |  |  |  |  |  |
| Western ODR | Total Time / hrs | 3,964 | 4,966 | 4,961 | 4,842 | 4,964 |
|  | Transient Queues / hrs | 730 | 1,042 | 1,038 | 1,016 | 1,037 |
|  | Over-Capacity Queues/ hrs | 0 | 17 | 9 | 10 | 11 |
|  | Link Delays / hrs * | - | - | - | - | - |
|  | Total Distance / km | 225,490 | 270,191 | 270,999 | 265,020 | 271,200 |
|  | Total Trips Loaded / pcu | 18,099 | 21,767 | 21,802 | 21,750 | 21,842 |
|  | Average Speed / kph | 56.9 | 54.4 | 54.6 | 54.7 | 54.6 |
|  |  |  |  |  |  |  |
| Eastern ODR | Total Time / hrs | 3,896 | 4,864 | 4,896 | 4,747 | 4,877 |
|  | Transient Queues / hrs | 700 | 998 | 1,014 | 955 | 1,003 |
|  | Over-Capacity Queues/ hrs | 0 | 17 | 18 | 4 | 10 |
|  | Link Delays / hrs * | 0 | 0 | 0 | 0 | 0 |
|  | Total Distance / km | 222,827 | 264,938 | 265,923 | 262,865 | 266,004 |
|  | Total Trips Loaded / pcu | 18,133 | 21,783 | 21,831 | 21,773 | 21,872 |
|  | Average Speed / kph | 57.2 | 54.5 | 54.3 | 55.4 | 54.5 |

* Link delays are not aggregated for the entire modelled area by SATURN
4.110 Examination of the summary statistics for the entire model network reveals that, for each demand scenario, addition of an ODR on either alignment, leads to a reduction in the total travel time, compared to the No ODR case, together with an increase in the total distance travelled. This is not unexpected for schemes such as the ODR, where the model predicts that drivers would be prepared to choose slightly longer distance routes in order to save some time.
4.111 The corresponding statistics for the PM Peak are shown in Table 4-9.

Table 4-9 Evening Peak - Summary of Highway Network Performance (entire model)

| Scheme | Indicators | Demand Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Total Time / hrs | 5,482 | 6,702 | 6,754 | 6,516 | 6,747 |
|  | Transient Queues / hrs | 1,119 | 1,411 | 1,456 | 1,391 | 1,432 |
|  | Over-Capacity Queues/ hrs | 100 | 324 | 324 | 216 | 324 |
|  | Link Delays / hrs * | - | - | - |  | - |
|  | Total Distance / km | 233,590 | 272,143 | 272,815 | 268,884 | 273,991 |
|  | Total Trips Loaded / pcu | 19,104 | 22,263 | 22,274 | 22,278 | 22,331 |
|  | Average Speed / kph | 42.6 | 40.6 | 40.4 | 41.3 | 40.6 |
|  |  |  |  |  |  |  |
| Western ODR | Total Time / hrs | 5,190 | 6,255 | 6,454 | 6,182 | 6,234 |
|  | Transient Queues / hrs | 899 | 1,157 | 1,243 | 1,159 | 1,144 |
|  | Over-Capacity Queues/ hrs | 28 | 97 | 164 | 95 | 71 |
|  | Link Delays / hrs * | - | - | - | - | - |
|  | Total Distance / km | 239,644 | 281,232 | 282,825 | 277,474 | 282,506 |
|  | Total Trips Loaded / pcu | 19,213 | 22,417 | 22,453 | 22,393 | 22,467 |
|  | Average Speed / kph | 46.2 | 45.0 | 43.8 | 44.9 | 45.3 |
|  |  |  |  |  |  |  |
| Eastern ODR | Total Time / hrs | 5,095 | 6,185 | 6,247 | 6,069 | 6,250 |
|  | Transient Queues / hrs | 868 | 1,144 | 1,187 | 1,090 | 1,181 |
|  | Over-Capacity Queues/ hrs | 10 | 87 | 92 | 87 | 91 |
|  | Link Delays / hrs * | 0 | 0 | 0 | 0 | 0 |
|  | Total Distance / km | 235,831 | 275,973 | 276,753 | 273,093 | 277,341 |
|  | Total Trips Loaded / pcu | 19,226 | 22,452 | 22,481 | 22,424 | 22,515 |
|  | Average Speed / kph | 46.3 | 44.6 | 44.3 | 45.0 | 44.4 |

* Link delays are not aggregated for the entire modelled area by SATURN
4.112 Addition of an ODR has a similar impact as that observed in the AM Peak - total travel time is predicted to fall, but total travel distance rises.
4.113 The SATURN software contains the ability to estimate emissions of various pollutants for a highway network, taking into account the amount of traffic using the network and the manner in which the modelled traffic flows around the network. Estimates of emissions of Carbon Monoxide $(\mathrm{CO})$, Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$, Oxides of Nitrogen ( NOx ), Hydrocarbons $(\mathrm{HC})$ and Lead ( Pb ) for each modelled scenario have been made and are presented in Table 4-10 and Table 4-11.

Table 4-10 Morning Peak - Emissions Summary (all values in kg )

| Scheme | Indicators | Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Carbon Monoxide | 757 | 961 | 974 | 934 | 967 |
|  | Carbon Dioxide | 7,148 | 8,846 | 8,988 | 8,692 | 8,934 |
|  | Nitrogen Oxides | 181 | 215 | 218 | 213 | 217 |
|  | Hydrocarbons | 137 | 173 | 175 | 168 | 173 |
|  | Lead | 0.780 | 0.960 | 0.970 | 0.940 | 0.960 |
| Western ODR | Carbon Monoxide | 703 | 900 | 902 | 869 | 902 |
|  | Carbon Dioxide | 7,242 | 9,180 | 9,209 | 8,858 | 9,221 |
|  | Nitrogen Oxides | 175 | 219 | 219 | 211 | 219 |
|  | Hydrocarbons | 127 | 163 | 163 | 157 | 163 |
|  | Lead | 0.730 | 0.930 | 0.930 | 0.900 | 0.930 |
|  |  |  |  |  |  |  |
| Eastern ODR | Carbon Monoxide | 706 | 900 | 916 | 876 | 914 |
|  | Carbon Dioxide | 7,255 | 9,036 | 9,188 | 8,867 | 9,174 |
|  | Nitrogen Oxides | 175 | 217 | 219 | 212 | 219 |
|  | Hydrocarbons | 128 | 163 | 165 | 158 | 165 |
|  | Lead | 0.730 | 0.920 | 0.940 | 0.900 | 0.940 |

Table 4-11 Evening Peak - Emissions Summary (all values in kg)

| Scheme | Indicators | Scenario |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DM | DS1 | DS2 | DS3 | DS4 |
| No ODR | Carbon Monoxide | 830 | 990 | 1,007 | 962 | 997 |
|  | Carbon Dioxide | 7,724 | 9,119 | 9,275 | 8,925 | 9,208 |
|  | Nitrogen Oxides | 189 | 216 | 218 | 213 | 217 |
|  | Hydrocarbons | 149 | 177 | 180 | 173 | 179 |
|  | Lead | 0.830 | 0.970 | 0.990 | 0.950 | 0.980 |
|  |  |  |  |  |  |  |
| Western ODR | Carbon Monoxide | 781 | 946 | 1,012 | 920 | 945 |
|  | Carbon Dioxide | 7,928 | 9,582 | 10,173 | 9,295 | 9,601 |
|  | Nitrogen Oxides | 189 | 226 | 237 | 218 | 227 |
|  | Hydrocarbons | 141 | 171 | 182 | 166 | 171 |
|  | Lead | 0.810 | 0.970 | 1.030 | 0.940 | 0.970 |
|  |  |  |  |  |  |  |
| Eastern ODR | Carbon Dioxide | 800 | 986 | 1,002 | 947 | 1,002 |
|  | Carbon Monoxide | 8,055 | 9,771 | 9,880 | 9,433 | 9,896 |
|  | Nitrogen Oxides | 191 | 227 | 229 | 220 | 229 |
|  | Hydrocarbons | 144 | 177 | 180 | 171 | 180 |
|  | Lead | 0.820 | 0.990 | 1.000 | 0.960 | 1.000 |

4.114 As can be seen, the addition of the extra demand associated with the housing and employment allocations leads to an increase in the modelled emissions, compared to the cases with only the

Do-Minimum demand. The addition of an ODR, on either alignment, is forecast to lead to a reduction in some emissions, such as Carbon Monoxide, but an increase in others, such as Carbon Dioxide. This is due to the mechanisms by which motor vehicle engines emit pollutants. Emissions of carbon dioxide are generally related to fuel consumption, so an increase in distance travelled would normally lead to an increase in $\mathrm{CO}_{2}$ emissions. In all demand scenarios, provision of an ODR does lead to an increase in total distance travelled, so an increase in $\mathrm{CO}_{2}$ emissions is not unexpected. Carbon monoxide emissions, however, are dependent upon speed of travel and so a vehicle travelling slowly tends to emit more CO than one travelling at a faster speed (up to around 50 mph ). So, vehicles travelling on a congested network tend to emit more CO than ones on a less congested network.
4.115 More details on the operation of the Future Year highway networks are provided in the sections that follow.

## 5 Analysis of Highway Model Results

## Introduction

5.116 The models have been tested for the following five demand scenarios:

- Do Minimum - including traffic growth forecast by TEMPRO and ESG highway scheme;
- Do Something 1-as Do-Minimum but with North/West focused housing and employment;
- Do Something 2 - as Do-Minimum but with South/West focused housing and employment;
- Do Something 3 - as Do-Minimum but with North/South focused housing and employment;
- Do Something 4 - as Do-Minimum but with a dispersed allocation of housing and employment.
5.117 Each demand scenario has been tested with each of three highway network options;
- No ODR - a „Do-Minimum' option, with only the ESG highway works;
- West ODR - as „No ODR', but with a Outer Distributor Road running to the West of the city; and
- East ODR - as „No ODR' but with an Outer Distributor Road running to the East of the city.

The following outputs have been assessed:

- Link Flow Analysis: The total flows using the network throughout the peak hours have been assessed for each scenario and comparison between the scenarios have been described in the following sections. The maps can be seen in Appendix C. Traffic flows are also reported in tabular format at selected locations.
- Junction Stress (Volume/Capacity): A junction is considered to be operating under stress if its volume to capacity ratio exceeds $85 \%$. If the volume to capacity ratio exceeds $100 \%$, then large delays are to be expected, whilst if the junction operates at a volume-to-capacity ratio above $120 \%$, the delays will be considerable. The maps can be seen in Appendix D.
- Link Speed: the link speed and the volume to capacity ratios of the junctions within Hereford town centre. Junctions above $85 \%$ capacity are located on the diagrams as well as the speed in kilometres per hour (kph). The maps can be seen in Appendix E.


## Link Flow Analysis

5.119 Traffic flows diagrams were compared to assess the impact of the proposed developments on traffic flows and to determine the impact of the proposed Outer Distributor Road. Site locations for the link flow data comparison are shown in Figure 5-1.

Figure 5-1 Site Locations for Flow Comparison

5.120 Forecast flows at the selected locations, for the scenarios without an ODR, with a Western ODR and with an Eastern ODR are shown in Table 5-1 to Table 5-6.
5.121 Graphical representations of the forecast flows are shown in Appendix C.

Table 5-1 Selected Link Flows - No ODR - AM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 517 | 540 | 538 | 543 | 555 | 547 |
| 1 | A49 north of Holmer | A49 | SB | 667 | 700 | 701 | 716 | 686 | 696 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 598 | 612 | 651 | 647 | 713 | 659 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 961 | 917 | 1033 | 1008 | 1050 | 1018 |
| 3 | Newtown Road | A49 | EB | 1068 | 1227 | 1317 | 1308 | 1309 | 1313 |
| 3 | Newtown Road | A49 | WB | 673 | 654 | 624 | 632 | 679 | 641 |
| 4 | Edgar Street at Football Ground | A49 | NB | 1015 | 1582 | 1620 | 1626 | 1571 | 1616 |
| 4 | Edgar Street at Football Ground | A49 | SB | 950 | 1568 | 1697 | 1677 | 1567 | 1675 |
| 5 | Victoria Street | A49 | NB | 1783 | 2066 | 2156 | 2265 | 2230 | 2229 |
| 5 | Victoria Street | A49 | SB | 1563 | 1764 | 1954 | 1911 | 1806 | 1905 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1182 | 1327 | 1365 | 1517 | 1512 | 1523 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 763 | 705 | 717 | 690 | 657 | 662 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 753 | 794 | 852 | 1037 | 1044 | 1025 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 467 | 499 | 564 | 574 | 584 | 576 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 366 | 414 | 485 | 504 | 505 | 506 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 504 | 548 | 612 | 810 | 809 | 799 |
| 10 | Roman Road east of A49 | A4103 | EB | 866 | 853 | 1274 | 1177 | 1217 | 1245 |
| 10 | Roman Road east of A49 | A4103 | WB | 555 | 721 | 822 | 810 | 847 | 835 |
| 11 | Roman Road west of A49 | A4103 | EB | 676 | 690 | 713 | 729 | 671 | 722 |
| 11 | Roman Road west of A49 | A4103 | WB | 653 | 764 | 707 | 734 | 676 | 724 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 389 | 363 | 339 | 359 | 368 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 334 | 636 | 794 | 786 | 681 |  |
| 13 | Alyestone Hill | A465 | NB | 323 | 483 | 519 | 511 | 488 | 511 |
| 13 | Alyestone Hill | A465 | SB | 446 | 338 | 522 | 500 | 564 | 509 |
| 14 | Commercial Road at Bus Station | A465 | NB | 850 | 549 | 631 | 645 | 644 | 659 |
| 14 | Commercial Road at Bus Station | A465 | SB | 705 | 191 | 211 | 199 | 236 | 212 |
| 15 | Belmont Road | A465 | EB | 538 | 617 | 788 | 748 | 775 | 724 |
| 15 | Belmont Road | A465 | WB | 529 | 494 | 575 | 585 | 614 | 584 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 364 | 340 | 385 | 382 | 400 | 387 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 482 | 482 | 552 | 549 | 555 | 550 |
| 17 | Blue School Street | A438 | EB | 1179 | 675 | 697 | 703 | 710 | 700 |
| 17 | Blue School Street | A438 | WB | 1294 | 388 | 390 | 389 | 391 | 391 |
| 18 | Eign Street | A438 | EB | 786 | 1014 | 1063 | 1070 | 1036 | 1055 |
| 18 | Eign Street | A438 | WB | 590 | 667 | 452 | 476 | 488 | 474 |
| 19 | Kings Acre Road | A438 | EB | 532 | 466 | 515 | 513 | 607 | 566 |
| 19 | Kings Acre Road | A438 | WB | 379 | 431 | 532 | 515 | 415 | 480 |
| 20 | Three Elms Road | A4110 | NB | 272 | 406 | 688 | 670 | 617 | 650 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Three Elms Road | A4110 | SB | 482 | 689 | 745 | 724 | 704 | 774 |
| 21 | ESG Link Road |  | EB | 0 | 578 | 701 | 694 | 651 | 690 |
| 21 | ESG Link Road |  | WB | 0 | 619 | 671 | 669 | 646 | 670 |
| 22 | Hampton Park Road |  | EB | 183 | 233 | 267 | 259 | 256 | 261 |
| 22 | Hampton Park Road |  | WB | 375 | 357 | 393 | 421 | 365 | 432 |
| 23 | Holme Lacy Road |  | EB | 502 | 758 | 776 | 732 | 690 | 726 |
| 23 | Holme Lacy Road |  | WB | 331 | 529 | 575 | 588 | 590 | 590 |
| 24 | Rotherwas Access Road |  | EB | 95 | 138 | 190 | 354 | 399 | 364 |
| 24 | Rotherwas Access Road |  | WB | 31 | 38 | 44 | 95 | 112 | 95 |
| 25 | ODR at Eastern river crossing |  | NB |  | - | - |  | - | - |
| 25 | ODR at Eastern river crossing |  | SB | - | - | - |  | - |  |
| 26 | ODR at Lugg Meadows |  | NB |  |  | - |  | - | - |
| 26 | ODR at Lugg Meadows |  | SB |  | - | - |  | - | - |
| 27 | ODR at New Court |  | NB | - | - | - |  | - | - |
| 27 | ODR at New Court |  | SB |  | - | - |  | - | - |
| 28 | ODR at Shelwick Green |  | EB |  | - | - |  | - | - |
| 28 | ODR at Shelwick Green |  | WB |  | - | - | - | - | - |
| 29 | ODR at Lyde Arundel |  | EB |  | - | - |  | - | - |
| 29 | ODR at Lyde Arundel |  | WB | - | - | - |  | - | - |
| 30 | ODR nr Towtree Lane |  | EB |  | - | - | - | - | - |
| 30 | ODR nr Towtree Lane |  | WB | - | - | - | - | - | - |
| 31 | ODR nr Swainshill |  | NB |  | - | - | - | - | - |
| 31 | ODR nr Swainshill |  | SB |  | - | - | - | - | - |
| 32 | ODR at Western river crossing |  | NB | - | - | - | - | - | - |
| 32 | ODR at Western river crossing |  | SB |  | - | - | - | - | - |
| 33 | ODR nr Grafton |  | EB |  | - | - | - | - | - |
| 33 | ODR nr Grafton |  | WB | - | - | - | - | - | - |

SATURN model

Table 5-2 Select Link Flows - ODR West - AM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 517 | 394 | 440 | 422 | 431 | 428 |
| 1 | A49 north of Holmer | A49 | SB | 667 | 741 | 750 | 815 | 768 | 757 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 598 | 498 | 475 | 456 | 508 | 465 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 961 | 974 | 1078 | 1059 | 1089 | 1076 |
| 3 | Newtown Road | A49 | EB | 1068 | 1026 | 1239 | 1221 | 1283 | 1232 |
| 3 | Newtown Road | A49 | WB | 673 | 484 | 526 | 507 | 544 | 487 |
| 4 | Edgar Street at Football Ground | A49 | NB | 1015 | 1434 | 1614 | 1608 | 1540 | 1578 |
| 4 | Edgar Street at Football Ground | A49 | SB | 950 | 1369 | 1461 | 1440 | 1494 | 1461 |
| 5 | Victoria Street | A49 | NB | 1783 | 1796 | 2005 | 2114 | 2015 | 2118 |
| 5 | Victoria Street | A49 | SB | 1563 | 1397 | 1497 | 1474 | 1435 | 1488 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1182 | 1144 | 1245 | 1415 | 1275 | 1404 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 763 | 696 | 643 | 639 | 638 | 665 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 753 | 647 | 705 | 890 | 724 | 888 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 467 | 432 | 458 | 484 | 494 | 486 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 366 | 388 | 416 | 447 | 445 | 447 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 504 | 442 | 506 | 698 | 518 | 694 |
| 10 | Roman Road east of A49 | A4103 | EB | 866 | 537 | 855 | 687 | 737 | 817 |
| 10 | Roman Road east of A49 | A4103 | WB | 555 | 516 | 586 | 535 | 589 | 550 |
| 11 | Roman Road west of A49 | A4103 | EB | 676 | 553 | 587 | 622 | 538 | 606 |
| 11 | Roman Road west of A49 | A4103 | WB | 653 | 643 | 632 | 693 | 616 | 647 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 389 | 118 | 74 | 86 | 153 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 334 | 540 | 619 | 656 | 540 |  |
| 13 | Alyestone Hill | A465 | NB | 323 | 574 | 671 | 647 | 626 | 651 |
| 13 | Alyestone Hill | A465 | SB | 446 | 374 | 642 | 595 | 676 | 632 |
| 14 | Commercial Road at Bus Station | A465 | NB | 850 | 528 | 585 | 576 | 628 | 591 |
| 14 | Commercial Road at Bus Station | A465 | SB | 705 | 156 | 213 | 194 | 222 | 205 |
| 15 | Belmont Road | A465 | EB | 538 | 492 | 662 | 624 | 637 | 617 |
| 15 | Belmont Road | A465 | WB | 529 | 379 | 423 | 416 | 455 | 413 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 364 | 318 | 364 | 362 | 377 | 364 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 482 | 495 | 556 | 556 | 557 | 562 |
| 17 | Blue School Street | A438 | EB | 1179 | 632 | 702 | 720 | 703 | 704 |
| 17 | Blue School Street | A438 | WB | 1294 | 364 | 372 | 362 | 373 | 369 |
| 18 | Eign Street | A438 | EB | 786 | 787 | 1002 | 963 | 911 | 956 |
| 18 | Eign Street | A438 | WB | 590 | 688 | 571 | 612 | 688 | 671 |
| 19 | Kings Acre Road | A438 | EB | 532 | 443 | 375 | 396 | 419 | 415 |
| 19 | Kings Acre Road | A438 | WB | 379 | 473 | 608 | 633 | 408 | 567 |
| 20 | Three Elms Road | A4110 | NB | 272 | 318 | 471 | 431 | 438 | 446 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | Three Elms Road | A4110 | SB | 482 | 421 | 604 | 592 | 588 | 582 |
| 21 | ESG Link Road |  | EB | 0 | 495 | 632 | 656 | 557 | 630 |
| 21 | ESG Link Road |  | WB | 0 | 586 | 650 | 639 | 633 | 644 |
| 22 | Hampton Park Road |  | EB | 183 | 210 | 219 | 213 | 214 | 217 |
| 22 | Hampton Park Road |  | 375 | 335 | 341 | 350 | 351 | 352 |  |
| 23 | Holme Lacy Road |  | EB | 502 | 555 | 586 | 584 | 663 | 588 |
| 23 | Holme Lacy Road |  | EB | 331 | 481 | 540 | 545 | 483 | 547 |
| 24 | Rotherwas Access Road |  | WB | 31 | 129 | 564 | 598 | 396 | 592 |
| 24 | Rotherwas Access Road |  | NB | - | - | - | - | - | - |
| 25 | ODR at Eastern river crossing |  | SB | - | - | - | - | - | - |
| 25 | ODR at Eastern river crossing |  |  | NB | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | SB | - | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | NB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | SB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | EB | - | 428 | 741 | 673 | 661 | 699 |
| 28 | ODR at Shelwick Green |  | WB | - | 361 | 468 | 448 | 495 | 448 |
| 28 | ODR at Shelwick Green |  | EB | - | 762 | 1110 | 1115 | 1050 | 1088 |
| 29 | ODR at Lyde Arundel |  | WB | - | 424 | 625 | 599 | 647 | 610 |
| 29 | ODR at Lyde Arundel |  | EB | - | 183 | 359 | 343 | 279 | 329 |
| 30 | ODR nr Towtree Lane |  | WB | - | 147 | 239 | 235 | 256 | 239 |
| 30 | ODR nr Towtree Lane |  | NB | - | 478 | 875 | 853 | 683 | 813 |
| 31 | ODR nr Swainshill |  | SB | - | 447 | 599 | 552 | 612 | 567 |
| 31 | ODR nr Swainshill |  | NB | - | 418 | 526 | 573 | 467 | 589 |
| 32 | ODR at Western river crossing |  | SB | - | 580 | 931 | 883 | 713 | 867 |
| 32 | ODR at Western river crossing |  | EB | -- | 382 | 605 | 593 | 422 | 584 |
| 33 | ODR nr Grafton |  | WB | - | 306 | 407 | 487 | 342 | 499 |
| 33 | ODR nr Grafton |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Table 5-3 Select Link Flows - ODR East - AM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 517 | 519 | 500 | 507 | 524 | 500 |
| 1 | A49 north of Holmer | A49 | SB | 667 | 833 | 783 | 857 | 828 | 784 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 598 | 550 | 598 | 549 | 654 | 583 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 961 | 969 | 1031 | 1014 | 1080 | 1030 |
| 3 | Newtown Road | A49 | EB | 1068 | 1156 | 1298 | 1283 | 1325 | 1291 |
| 3 | Newtown Road | A49 | WB | 673 | 596 | 682 | 666 | 759 | 677 |
| 4 | Edgar Street at Football Ground | A49 | NB | 1015 | 1266 | 1536 | 1539 | 1457 | 1560 |
| 4 | Edgar Street at Football Ground | A49 | SB | 950 | 1147 | 1301 | 1270 | 1248 | 1297 |
| 5 | Victoria Street | A49 | NB | 1783 | 1657 | 1860 | 1947 | 1864 | 1953 |
| 5 | Victoria Street | A49 | SB | 1563 | 1194 | 1359 | 1345 | 1283 | 1349 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1182 | 937 | 1057 | 1218 | 1108 | 1223 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 763 | 559 | 452 | 643 | 435 | 639 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 753 | 627 | 696 | 811 | 814 | 812 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 467 | 430 | 467 | 495 | 494 | 494 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 366 | 390 | 429 | 445 | 459 | 442 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 504 | 429 | 504 | 607 | 626 | 607 |
| 10 | Roman Road east of A49 | A4103 | EB | 866 | 518 | 919 | 740 | 767 | 876 |
| 10 | Roman Road east of A49 | A4103 | WB | 555 | 424 | 606 | 527 | 595 | 577 |
| 11 | Roman Road west of A49 | A4103 | EB | 676 | 581 | 616 | 663 | 593 | 603 |
| 11 | Roman Road west of A49 | A4103 | WB | 653 | 602 | 605 | 626 | 581 | 603 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 389 | 185 | 201 | 191 | 204 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 334 | 497 | 635 | 643 | 522 |  |
| 13 | Alyestone Hill | A465 | NB | 323 | 396 | 489 | 489 | 516 | 502 |
| 13 | Alyestone Hill | A465 | SB | 446 | 347 | 562 | 558 | 620 | 567 |
| 14 | Commercial Road at Bus Station | A465 | NB | 850 | 469 | 532 | 550 | 553 | 557 |
| 14 | Commercial Road at Bus Station | A465 | SB | 705 | 164 | 161 | 158 | 202 | 163 |
| 15 | Belmont Road | A465 | EB | 538 | 519 | 626 | 635 | 629 | 630 |
| 15 | Belmont Road | A465 | WB | 529 | 379 | 427 | 421 | 421 | 423 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 364 | 254 | 288 | 291 | 298 | 289 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 482 | 406 | 408 | 394 | 443 | 399 |
| 17 | Blue School Street | A438 | EB | 1179 | 635 | 709 | 711 | 674 | 713 |
| 17 | Blue School Street | A438 | WB | 1294 | 351 | 347 | 349 | 360 | 350 |
| 18 | Eign Street | A438 | EB | 786 | 874 | 1041 | 1046 | 946 | 1034 |
| 18 | Eign Street | A438 | WB | 590 | 759 | 557 | 555 | 597 | 556 |
| 19 | Kings Acre Road | A438 | EB | 532 | 486 | 483 | 480 | 558 | 523 |
| 19 | Kings Acre Road | A438 | WB | 379 | 380 | 537 | 518 | 380 | 471 |
| 20 | Three Elms Road | A4110 | NB | 272 | 337 | 667 | 560 | 561 | 569 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | Three Elms Road | A4110 | SB | 482 | 379 | 652 | 589 | 671 | 634 |
| 21 | ESG Link Road |  | EB | 0 | 512 | 598 | 611 | 559 | 609 |
| 21 | ESG Link Road |  | EB | 0 | 183 | 506 | 603 | 597 | 572 |
| 22 | Hampton Park Road |  | WB | 375 | 528 | 562 | 533 | 539 | 535 |
| 22 | Hampton Park Road |  | EB | 502 | 439 | 439 | 436 | 476 | 432 |
| 23 | Holme Lacy Road |  | WB | 331 | 494 | 595 | 588 | 611 | 589 |
| 23 | Holme Lacy Road |  | EB | 95 | 402 | 488 | 715 | 746 | 718 |
| 24 | Rotherwas Access Road |  | WB | 31 | 300 | 377 | 434 | 478 | 436 |
| 24 | Rotherwas Access Road |  | NB | - | 842 | 1052 | 1228 | 1014 | 1238 |
| 25 | ODR at Eastern river crossing |  | SB | - | 1241 | 1498 | 1492 | 1329 | 1497 |
| 25 | ODR at Eastern river crossing |  | NB | - | 687 | 815 | 862 | 752 | 865 |
| 26 | ODR at Lugg Meadows |  | SB | - | 797 | 960 | 935 | 846 | 941 |
| 26 | ODR at Lugg Meadows |  | NB | - | 372 | 441 | 493 | 380 | 498 |
| 27 | ODR at New Court |  | SB | - | 543 | 642 | 623 | 512 | 632 |
| 27 | ODR at New Court |  | EB | - | 628 | 912 | 867 | 784 | 874 |
| 28 | ODR at Shelwick Green |  | WB | - | 446 | 565 | 611 | 580 | 609 |
| 28 | ODR at Shelwick Green |  | EB | - | 928 | 1242 | 1254 | 1110 | 1178 |
| 29 | ODR at Lyde Arundel |  | WB | - | 544 | 702 | 733 | 705 | 723 |
| 29 | ODR at Lyde Arundel |  | EB | - | 102 | 179 | 179 | 122 | 162 |
| 30 | ODR nr Towtree Lane |  | WB | - | 104 | 143 | 144 | 139 | 141 |
| 30 | ODR nr Towtree Lane |  | NB | - | - | - | - | - | - |
| 31 | ODR nr Swainshill | SB | - | - | - | - | - | - |  |
| 31 | ODR nr Swainshill | NB | - | - | - | - | - | - |  |
| 32 | ODR at Western river crossing |  | SB | - | - | - | - | - | - |
| 32 | ODR at Western river crossing |  | EB | - | 145 | 209 | 180 | 168 | 181 |
| 33 | ODR nr Grafton |  | WB | - | 239 | 286 | 311 | 328 | 311 |
| 33 | ODR nr Grafton |  |  |  |  |  |  |  |  |

Table 5-4 Selected Link Flows - No ODR - PM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 506 | 558 | 577 | 586 | 619 | 574 |
| 1 | A49 north of Holmer | A49 | SB | 553 | 583 | 664 | 640 | 657 | 662 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 786 | 745 | 708 | 680 | 758 | 726 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 726 | 755 | 724 | 720 | 781 | 720 |
| 3 | Newtown Road | A49 | EB | 820 | 822 | 887 | 867 | 910 | 886 |
| 3 | Newtown Road | A49 | WB | 943 | 1164 | 1285 | 1280 | 1223 | 1283 |
| 4 | Edgar Street at Football Ground | A49 | NB | 764 | 1081 | 1194 | 1175 | 1081 | 1157 |
| 4 | Edgar Street at Football Ground | A49 | SB | 1069 | 1639 | 1625 | 1597 | 1610 | 1627 |
| 5 | Victoria Street | A49 | NB | 1823 | 1888 | 1969 | 1985 | 1923 | 1957 |
| 5 | Victoria Street | A49 | SB | 2085 | 2099 | 2122 | 2143 | 2109 | 2154 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1031 | 1279 | 1478 | 1501 | 1440 | 1490 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 829 | 815 | 878 | 911 | 858 | 911 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 521 | 636 | 868 | 891 | 840 | 877 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 565 | 593 | 622 | 720 | 726 | 717 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 386 | 418 | 451 | 562 | 565 | 560 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 361 | 494 | 723 | 757 | 711 | 744 |
| 10 | Roman Road east of A49 | A4103 | EB | 560 | 735 | 1029 | 988 | 967 | 990 |
| 10 | Roman Road east of A49 | A4103 | WB | 816 | 929 | 1163 | 1097 | 1049 | 1171 |
| 11 | Roman Road west of A49 | A4103 | EB | 674 | 715 | 657 | 674 | 662 | 663 |
| 11 | Roman Road west of A49 | A4103 | WB | 737 | 866 | 803 | 818 | 790 | 813 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 221 | 240 | 295 | 291 | 246 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 333 | 527 | 555 | 558 | 671 |  |
| 13 | Alyestone Hill | A465 | NB | 452 | 605 | 787 | 780 | 841 | 838 |
| 13 | Alyestone Hill | A465 | SB | 303 | 257 | 420 | 405 | 374 | 416 |
| 14 | Commercial Road at Bus Station | A465 | NB | 859 | 301 | 366 | 365 | 368 | 367 |
| 14 | Commercial Road at Bus Station | A465 | SB | 691 | 206 | 232 | 251 | 237 | 252 |
| 15 | Belmont Road | A465 | EB | 1010 | 989 | 1002 | 994 | 988 | 976 |
| 15 | Belmont Road | A465 | WB | 1075 | 1054 | 1077 | 1065 | 1109 | 1073 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 473 | 445 | 554 | 531 | 544 | 555 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 232 | 212 | 214 | 222 | 240 | 224 |
| 17 | Blue School Street | A438 | EB | 1053 | 683 | 762 | 758 | 766 | 746 |
| 17 | Blue School Street | A438 | WB | 1228 | 382 | 385 | 379 | 343 | 388 |
| 18 | Eign Street | A438 | EB | 748 | 874 | 1010 | 1038 | 928 | 1003 |
| 18 | Eign Street | A438 | WB | 936 | 916 | 883 | 890 | 869 | 887 |
| 19 | Kings Acre Road | A438 | EB | 417 | 484 | 636 | 615 | 583 | 617 |
| 19 | Kings Acre Road | A438 | WB | 433 | 494 | 547 | 567 | 681 | 624 |
| 20 | Three Elms Road | A4110 | NB | 391 | 486 | 764 | 708 | 657 | 625 |
| 20 | Three Elms Road | A4110 | SB | 304 | 451 | 644 | 636 | 641 | 641 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 21 | ESG Link Road |  | EB | 0 | 623 | 623 | 620 | 661 | 627 |
| 21 | ESG Link Road |  | WB | 0 | 705 | 769 | 771 | 655 | 770 |
| 22 | Hampton Park Road |  | EB | 296 | 364 | 402 | 434 | 407 | 431 |
| 22 | Hampton Park Road |  | WB | 170 | 236 | 263 | 271 | 248 | 279 |
| 23 | Holme Lacy Road |  | EB | 196 | 268 | 285 | 301 | 310 | 303 |
| 23 | Holme Lacy Road |  | WB | 432 | 640 | 571 | 595 | 665 | 596 |
| 24 | Rotherwas Access Road |  | EB | 26 | 82 | 127 | 185 | 202 | 187 |
| 24 | Rotherwas Access Road |  | WB | 107 | 307 | 494 | 538 | 522 | 532 |
| 25 | ODR at Eastern river crossing |  | NB | - | - | - | - | - | - |
| 25 | ODR at Eastern river crossing |  | SB | - | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | NB | - | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | SB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | NB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | SB | - | - | - | - | - | - |
| 28 | ODR at Shelwick Green |  | EB | - | - | - | - | - | - |
| 28 | ODR at Shelwick Green |  | WB | - | - | - | - | - | - |
| 29 | ODR at Lyde Arundel |  | EB | - | - | - | - | - | - |
| 29 | ODR at Lyde Arundel |  | WB | - | - | - | - | - | - |
| 30 | ODR nr Towtree Lane |  | EB | - | - | - | - | - | - |
| 30 | ODR nr Towtree Lane |  | WB | - | - | - | - | - | - |
| 31 | ODR nr Swainshill |  | NB | - | - | - | - | - | - |
| 31 | ODR nr Swainshill |  | SB | - | - | - | - | - | - |
| 32 | ODR at Western river crossing |  | NB | - | - | - | - | - | - |
| 32 | ODR at Western river crossing |  | SB | - | - | - | - | - | - |
| 33 | ODR nr Grafton | EB | - | - | - | - | - | - |  |
| 33 | ODR nr Grafton | WB | - | - | - | - | - |  |  |

Table 5-5 Select Link Flows - ODR West - PM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 506 | 610 | 661 | 633 | 751 | 658 |
| 1 | A49 north of Holmer | A49 | SB | 553 | 445 | 445 | 435 | 533 | 441 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 786 | 718 | 768 | 772 | 851 | 799 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 726 | 727 | 689 | 711 | 840 | 750 |
| 3 | Newtown Road | A49 | EB | 820 | 775 | 923 | 968 | 985 | 898 |
| 3 | Newtown Road | A49 | WB | 943 | 1075 | 1232 | 1174 | 1191 | 1214 |
| 4 | Edgar Street at Football Ground | A49 | NB | 764 | 1039 | 1166 | 1250 | 1092 | 1144 |
| 4 | Edgar Street at Football Ground | A49 | SB | 1069 | 1712 | 1719 | 1761 | 1684 | 1706 |
| 5 | Victoria Street | A49 | NB | 1823 | 1622 | 1696 | 1813 | 1655 | 1722 |
| 5 | Victoria Street | A49 | SB | 2085 | 1952 | 2014 | 2053 | 1991 | 2028 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1031 | 851 | 951 | 1052 | 940 | 982 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 829 | 789 | 825 | 864 | 835 | 870 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 521 | 356 | 443 | 543 | 465 | 503 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 565 | 565 | 639 | 711 | 666 | 711 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 386 | 467 | 550 | 623 | 576 | 629 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 361 | 299 | 392 | 493 | 416 | 456 |
| 10 | Roman Road east of A49 | A4103 | EB | 560 | 490 | 661 | 619 | 588 | 643 |
| 10 | Roman Road east of A49 | A4103 | WB | 816 | 522 | 836 | 816 | 692 | 781 |
| 11 | Roman Road west of A49 | A4103 | EB | 674 | 608 | 635 | 664 | 641 | 646 |
| 11 | Roman Road west of A49 | A4103 | WB | 737 | 766 | 837 | 874 | 832 | 844 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 221 | 227 | 163 | 163 | 125 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 333 | 308 | 330 | 319 | 395 |  |
| 13 | Alyestone Hill | A465 | NB | 452 | 496 | 795 | 845 | 842 | 751 |
| 13 | Alyestone Hill | A465 | SB | 303 | 374 | 473 | 434 | 509 | 469 |
| 14 | Commercial Road at Bus Station | A465 | NB | 859 | 322 | 392 | 415 | 378 | 353 |
| 14 | Commercial Road at Bus Station | A465 | SB | 691 | 200 | 226 | 221 | 219 | 223 |
| 15 | Belmont Road | A465 | EB | 1010 | 757 | 735 | 732 | 757 | 727 |
| 15 | Belmont Road | A465 | WB | 1075 | 814 | 805 | 800 | 839 | 799 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 473 | 468 | 554 | 528 | 560 | 554 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 232 | 199 | 222 | 209 | 245 | 223 |
| 17 | Blue School Street | A438 | EB | 1053 | 695 | 779 | 774 | 766 | 776 |
| 17 | Blue School Street | A438 | WB | 1228 | 316 | 295 | 302 | 315 | 321 |
| 18 | Eign Street | A438 | EB | 748 | 598 | 702 | 783 | 746 | 709 |
| 18 | Eign Street | A438 | WB | 936 | 739 | 723 | 722 | 704 | 730 |
| 19 | Kings Acre Road | A438 | EB | 417 | 447 | 527 | 539 | 403 | 511 |
| 19 | Kings Acre Road | A438 | WB | 433 | 460 | 480 | 454 | 420 | 498 |
| 20 | Three Elms Road | A4110 | NB | 391 | 355 | 444 | 435 | 429 | 437 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | Three Elms Road | A4110 | SB | 304 | 524 | 746 | 810 | 653 | 701 |
| 21 | ESG Link Road |  | EB | 0 | 609 | 659 | 602 | 606 | 619 |
| 21 | ESG Link Road |  | EB | 0 | 296 | 347 | 767 | 773 | 656 |
| 22 | Hampton Park Road |  | WB | 170 | 169 | 173 | 400 | 373 | 390 |
| 22 | Hampton Park Road |  | EB | 196 | 212 | 232 | 256 | 217 | 251 |
| 23 | Holme Lacy Road |  | WB | 432 | 665 | 727 | 762 | 737 | 725 |
| 23 | Holme Lacy Road |  | EB | 26 | 224 | 310 | 350 | 253 | 330 |
| 24 | Rotherwas Access Road |  | WB | 107 | 473 | 618 | 688 | 524 | 676 |
| 24 | Rotherwas Access Road |  | NB | - | - | - | - | - | - |
| 25 | ODR at Eastern river crossing |  | SB | - | - | - | - | - | - |
| 25 | ODR at Eastern river crossing |  | NB | - | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | SB | - | - | - | - | - | - |
| 26 | ODR at Lugg Meadows |  | NB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | SB | - | - | - | - | - | - |
| 27 | ODR at New Court |  | EB | - | 326 | 425 | 433 | 417 | 419 |
| 28 | ODR at Shelwick Green |  | WB | - | 308 | 498 | 645 | 460 | 488 |
| 28 | ODR at Shelwick Green |  | EB | - | 609 | 719 | 749 | 717 | 710 |
| 29 | ODR at Lyde Arundel |  | WB | - | 663 | 921 | 1093 | 894 | 909 |
| 29 | ODR at Lyde Arundel |  | EB | - | 352 | 510 | 547 | 461 | 506 |
| 30 | ODR nr Towtree Lane |  | WB | - | 284 | 441 | 584 | 382 | 425 |
| 30 | ODR nr Towtree Lane |  | NB | - | 638 | 921 | 951 | 820 | 906 |
| 31 | ODR nr Swainshill |  | SB | - | 661 | 985 | 1151 | 915 | 968 |
| 31 | ODR nr Swainshill |  | NB | - | 666 | 891 | 947 | 725 | 880 |
| 32 | ODR at Western river crossing |  | SB | - | 513 | 661 | 820 | 544 | 702 |
| 32 | ODR at Western river crossing |  | EB | - | 368 | 509 | 652 | 418 | 590 |
| 33 | ODR nr Grafton |  | WB | - | 716 | 955 | 980 | 815 | 969 |
| 33 | ODR nr Grafton |  |  |  |  |  |  |  |  |

Table 5-6 Select Link Flows - ODR East - PM Peak - pcu per hour

| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A49 north of Holmer | A49 | NB | 506 | 713 | 741 | 771 | 841 | 749 |
| 1 | A49 north of Holmer | A49 | SB | 553 | 617 | 595 | 625 | 711 | 599 |
| 2 | Holmer Road opp Racecourse | A49 | NB | 786 | 724 | 802 | 803 | 888 | 823 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 726 | 727 | 745 | 739 | 877 | 775 |
| 3 | Newtown Road | A49 | EB | 820 | 883 | 996 | 951 | 1037 | 974 |
| 3 | Newtown Road | A49 | WB | 943 | 1156 | 1297 | 1278 | 1198 | 1262 |
| 4 | Edgar Street at Football Ground | A49 | NB | 764 | 1009 | 1118 | 1113 | 947 | 1101 |
| 4 | Edgar Street at Football Ground | A49 | SB | 1069 | 1659 | 1642 | 1650 | 1629 | 1645 |
| 5 | Victoria Street | A49 | NB | 1823 | 1567 | 1698 | 1710 | 1616 | 1721 |
| 5 | Victoria Street | A49 | SB | 2085 | 1862 | 1935 | 1963 | 1872 | 1965 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | 1031 | 794 | 933 | 950 | 921 | 954 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | 829 | 629 | 641 | 673 | 655 | 680 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | 521 | 397 | 463 | 494 | 512 | 494 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | 565 | 583 | 626 | 658 | 674 | 658 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 386 | 510 | 568 | 602 | 622 | 606 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | 361 | 371 | 447 | 479 | 505 | 481 |
| 10 | Roman Road east of A49 | A4103 | EB | 560 | 450 | 666 | 580 | 560 | 650 |
| 10 | Roman Road east of A49 | A4103 | WB | 816 | 498 | 851 | 729 | 682 | 802 |
| 11 | Roman Road west of A49 | A4103 | EB | 674 | 576 | 619 | 629 | 607 | 629 |
| 11 | Roman Road west of A49 | A4103 | WB | 737 | 669 | 803 | 792 | 749 | 802 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 221 | 263 | 245 | 250 | 163 |  |
| 12 | Roman Road nr Staniers Way | A4103 | WB | 333 | 355 | 376 | 342 | 381 |  |
| 13 | Alyestone Hill | A465 | NB | 452 | 443 | 681 | 609 | 667 | 652 |
| 13 | Alyestone Hill | A465 | SB | 303 | 246 | 370 | 333 | 378 | 352 |
| 14 | Commercial Road at Bus Station | A465 | NB | 859 | 322 | 368 | 361 | 383 | 363 |
| 14 | Commercial Road at Bus Station | A465 | SB | 691 | 198 | 226 | 236 | 218 | 233 |
| 15 | Belmont Road | A465 | EB | 1010 | 842 | 885 | 881 | 871 | 880 |
| 15 | Belmont Road | A465 | WB | 1075 | 928 | 977 | 971 | 963 | 967 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 473 | 378 | 446 | 446 | 458 | 446 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 232 | 139 | 158 | 160 | 175 | 158 |
| 17 | Blue School Street | A438 | EB | 1053 | 656 | 747 | 736 | 738 | 741 |
| 17 | Blue School Street | A438 | WB | 1228 | 324 | 314 | 325 | 322 | 324 |
| 18 | Eign Street | A438 | EB | 748 | 725 | 854 | 851 | 794 | 841 |
| 18 | Eign Street | A438 | WB | 936 | 879 | 899 | 892 | 927 | 898 |
| 19 | Kings Acre Road | A438 | EB | 417 | 389 | 536 | 528 | 429 | 523 |
| 19 | Kings Acre Road | A438 | WB | 433 | 475 | 527 | 523 | 570 | 542 |
| 20 | Three Elms Road | A4110 | NB | 391 | 322 | 469 | 412 | 366 | 447 |


| No | Location | Name | Dir | Base | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Three Elms Road | A4110 | SB | 304 | 465 | 767 | 697 | 709 | 709 |
| 21 | ESG Link Road |  | EB | 0 | 589 | 590 | 599 | 592 | 596 |
| 21 | ESG Link Road |  | WB | 0 | 681 | 725 | 723 | 625 | 730 |
| 22 | Hampton Park Road |  | EB | 296 | 569 | 666 | 689 | 689 | 668 |
| 22 | Hampton Park Road |  | WB | 170 | 360 | 384 | 411 | 414 | 411 |
| 23 | Holme Lacy Road |  | EB | 196 | 244 | 269 | 284 | 321 | 283 |
| 23 | Holme Lacy Road |  | WB | 432 | 635 | 681 | 633 | 679 | 628 |
| 24 | Rotherwas Access Road |  | EB | 26 | 443 | 539 | 630 | 659 | 637 |
| 24 | Rotherwas Access Road |  | WB | 107 | 614 | 683 | 824 | 849 | 826 |
| 25 | ODR at Eastern river crossing |  | NB |  | 1157 | 1333 | 1380 | 1272 | 1387 |
| 25 | ODR at Eastern river crossing |  | SB |  | 1170 | 1558 | 1612 | 1454 | 1602 |
| 26 | ODR at Lugg Meadows |  | NB | - | 822 | 926 | 946 | 866 | 952 |
| 26 | ODR at Lugg Meadows |  | SB |  | 744 | 867 | 903 | 788 | 905 |
| 27 | ODR at New Court |  | NB | - | 657 | 760 | 764 | 689 | 769 |
| 27 | ODR at New Court |  | SB | - | 555 | 619 | 638 | 546 | 636 |
| 28 | ODR at Shelwick Green |  | EB | - | 371 | 523 | 518 | 451 | 531 |
| 28 | ODR at Shelwick Green |  | WB | - | 471 | 738 | 696 | 560 | 725 |
| 29 | ODR at Lyde Arundel |  | EB | - | 673 | 796 | 813 | 778 | 804 |
| 29 | ODR at Lyde Arundel |  | WB | - | 778 | 1074 | 1057 | 939 | 1060 |
| 30 | ODR nr Towtree Lane |  | EB | - | 86 | 102 | 116 | 117 | 99 |
| 30 | ODR nr Towtree Lane |  | WB | - | 39 | 95 | 94 | 54 | 84 |
| 31 | ODR nr Swainshill |  | NB | - | - |  | - | - |  |
| 31 | ODR nr Swainshill |  | SB | - | - |  | - | - | - |
| 32 | ODR at Western river crossing |  | NB | - | - |  | - | - |  |
| 32 | ODR at Western river crossing |  | SB | - | - | - | - | - | - |
| 33 | ODR nr Grafton |  | EB | - | 290 | 370 | 388 | 391 | 394 |
| 33 | ODR nr Grafton |  | WB | - | 477 | 568 | 548 | 533 | 551 |

## Impact of ODR

5.122 Further analysis was undertaken to assess the impact an Outer Distributor Road (ODR) has on the main roads in and around Hereford. The link flows with a NO ODR scenario were compared to that of West and East ODR scenario. The total flow comparison for each type of roads is shown in Table 5.7 to Table 5.10. The full comparison tables have been provided in Appendix - F.

Table 5.7 AM Comparison: West ODR - NO ODR

| Road Type | Road Name | Direction | (West ODR minus NO ODR) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Do Min | DS1 | DS2 | DS3 | DS4 |
| Trunk Road | A49 | NB | -1204 | -865 | -912 | -1327 | -931 |
|  |  | SB | -851 | -963 | -864 | -749 | -785 |
| Primary Road | A4103 | EB | -698 | -810 | -870 | -828 | -544 |
|  |  | WB | -422 | -486 | -446 | -459 | -362 |
|  | A465 | NB/EB | -55 | -20 | -57 | -16 | -35 |
|  |  | SB/WB | -114 | -30 | -79 | -61 | -55 |
|  | A438 | NB/EB | -315 | -217 | -227 | -343 | -269 |
|  |  | SB/WB | 52 | 181 | 234 | 177 | 274 |
|  | A4110 | NB | -88 | -217 | -239 | -179 | -204 |
|  |  | SB | -268 | -141 | -132 | -116 | -192 |
| Non-Primary Roads | Only Major Roads | EB | -40 | 67 | 12 | -166 | -14 |
|  |  | WB | -12 | 34 | -23 | -121 | -25 |

Table 5.8 AM Comparison: East ODR - NO ODR

| Road Type | Road Name | Direction | (East ODR minus NO ODR) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Do Min | DS1 | DS2 | DS3 | DS4 |
| Trunk Road | A49 | NB | -1447 | -933 | -1089 | -1170 | -996 |
|  |  | SB | -1211 | -1400 | -1180 | -1149 | -1153 |
| Primary Road | A4103 | EB | -622 | -590 | -671 | -692 | -488 |
|  |  | WB | -598 | -477 | -534 | -506 | -379 |
|  | A465 | NB/EB | -265 | -291 | -230 | -209 | -205 |
|  |  | SB/WB | -133 | -158 | -147 | -171 | -152 |
|  | A438 | NB/EB | -246 | -139 | -140 | -277 | -149 |
|  |  | SB/WB | -72 | -77 | -113 | -69 | -119 |
|  | A4110 | NB | -69 | -21 | -110 | -56 | -81 |
|  |  | SB | -310 | -93 | -135 | -33 | -140 |
| Non-Primary Roads | Only Major Roads | EB | 151 | 123 | 256 | 324 | 253 |
|  |  | WB | 285 | 461 | 495 | 549 | 491 |

Table 5.9 PM Comparison: West ODR - NO ODR

| Road Type | Road Name | Direction | (West ODR minus NO ODR) |
| :--- | :--- | :--- | :--- |


|  |  |  | Do Min | DS1 | DS2 | DS3 | DS4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trunk Road | A49 | NB | -1031 | -1063 | -800 | -928 | -973 |
|  |  | SB | -536 | -599 | -359 | -412 | -561 |
| Primary Road | A4103 | EB | -365 | -522 | -507 | -521 | -364 |
|  |  | WB | -726 | -518 | -464 | -591 | -359 |
|  | A465 | NB/EB | -320 | -233 | -147 | -220 | -350 |
|  |  | SB/WB | -129 | -225 | -266 | -153 | -250 |
|  | A438 | NB/EB | -278 | -400 | -318 | -346 | -371 |
|  |  | SB/WB | -290 | -309 | -371 | -449 | -351 |
|  | A4110 | NB | -131 | -320 | -273 | -228 | -188 |
|  |  | SB | 73 | 102 | 174 | 12 | 60 |
| Non-Primary Roads | Only Major Roads | EB | 55 | 144 | 68 | -131 | 42 |
|  |  | WB | 136 | 188 | 218 | 15 | 153 |

Table 5.10 PM Comparison: East ODR - NO ODR

| Road Type | Road Name | Direction | (East ODR minus NO ODR) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Do Min | DS1 | DS2 | DS3 | DS4 |
| Trunk Road | A49 | NB | -899 | -910 | -939 | -904 | -914 |
|  |  | SB | -469 | -618 | -617 | -402 | -644 |
| Primary Road | A4103 | EB | -401 | -451 | -494 | -545 | -374 |
|  |  | WB | -800 | -491 | -610 | -698 | -380 |
|  | A465 | NB/EB | -288 | -221 | -288 | -276 | -286 |
|  |  | SB/WB | -145 | -156 | -181 | -161 | -189 |
|  | A438 | NB/EB | -338 | -379 | -381 | -402 | -370 |
|  |  | SB/WB | -187 | -131 | -158 | -139 | -201 |
|  | A4110 | NB | -164 | -295 | -296 | -291 | -178 |
|  |  | SB | 14 | 123 | 61 | 68 | 68 |
| Non-Primary Roads | Only Major Roads | EB | 508 | 627 | 662 | 681 | 636 |
|  |  | WB | 402 | 376 | 416 | 477 | 418 |

5.123 The negative values show a decrease in link flows due to the ODR. The table clearly indicates that the ODR is providing relief to the A49 and other primary roads in both peaks. However, in case of non primary roads there is an increase in traffic flow. This is mainly due to Rotherwas Access road and Home lacy road. Both roads are at the edge of Hereford centre. Traffic flows on Hampton Park Road increase due to the Eastern ODR. This is because of traffic coming in to the city centre now using the Hampton road via the Eastern ODR instead of using the A465 / A438.

## Journey Time Analysis

5.124 During the construction of the Base Year models, a total of eight routes through the city were surveyed and average journey times for each route were obtained. In order to provide an assessment of the impacts on typical journey times in Hereford in each of the future year scenarios, average journey times for the same eight routes were extracted from the future year highway models.
5.125 Figure 5-2 shows the eight journey-time routes that were surveyed. Due to the changes associated with the Edgar Street Grid works, it is not possible to follow Route 5 in any of the Future Year networks.

Figure 5-2 Journey Time Route Locations

5.126 The forecast journey times for the seven available routes are shown in Table 5-11 and Table 5-12 below.

| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| 48 | MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

Table 5-11 AM Peak - Comparison of Journey Times

| Scheme | Average | d Journe | ime / mm:s |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No ODR | Route | DoMin | Option 1 | Option 2 | Option 3 | Option 4 |
|  | 1 | 26:02 | 30:38 | 30:59 | 29:11 | 31:19 |
|  | 2 | 21:40 | 25:18 | 24:49 | 25:06 | 25:11 |
|  | 3 | 23:51 | 29:03 | 27:54 | 26:56 | 28:18 |
|  | 4 | 21:22 | 23:56 | 23:45 | 24:06 | 23:49 |
|  | 5 | - | - | - | - | - |
|  | 6 | 30:20 | 37:21 | 36:44 | 35:17 | 36:08 |
|  | 7 | 22:36 | 26:27 | 26:26 | 26:34 | 26:27 |
|  | 8 | 24:09 | 28:50 | 28:24 | 27:49 | 28:19 |
|  | Total | 170:00 | 201:34 | 199:01 | 194:58 | 199:31 |
|  |  |  |  |  |  |  |
| Western ODR | 1 | 23:01 | 25:59 | 25:37 | 25:37 | 25:59 |
|  | 2 | 19:43 | 22:09 | 21:37 | 22:09 | 21:49 |
|  | 3 | 22:28 | 24:10 | 24:35 | 24:13 | 24:31 |
|  | 4 | 19:53 | 21:36 | 21:12 | 21:18 | 21:21 |
|  | 5 | - | - | - | - | - |
|  | 6 | 27:52 | 30:51 | 30:26 | 30:33 | 30:16 |
|  | 7 | 19:17 | 22:43 | 22:39 | 22:39 | 22:44 |
|  | 8 | 21:56 | 24:31 | 24:07 | 24:22 | 24:18 |
|  | Total | 154:10 | 171:58 | 170:13 | 170:50 | 170:59 |
|  |  |  |  |  |  |  |
| Eastern ODR | 1 | 21:56 | 23:29 | 23:39 | 23:13 | 23:32 |
|  | 2 | 19:18 | 21:25 | 21:01 | 21:33 | 21:17 |
|  | 3 | 21:51 | 23:05 | 23:02 | 22:52 | 23:08 |
|  | 4 | 19:15 | 20:17 | 20:06 | 20:04 | 21:51 |
|  | 5 | - | - | - | - | - |
|  | 6 | 27:11 | 30:00 | 30:33 | 29:19 | 30:09 |
|  | 7 | 18:46 | 21:54 | 23:46 | 21:57 | 23:49 |
|  | 8 | 20:58 | 23:05 | 22:54 | 23:10 | 22:57 |
|  | Total | 149:15 | 163:15 | 165:01 | 162:08 | 166:43 |

source: SATURN models
5.127 It can be seen that in the case without an ODR, the additional demand associated with the housing and employment options leads to an increase in the sample journey times. The increases are of the order of $15 \%$ to $18 \%$, depending on the demand option, in the AM Peak.
5.128 Provision of a Western ODR leads to the sample journey times falling back to the levels seen in the Do-Minimum situation (i.e. without an ODR and without the additional demand). The addition of the Eastern ODR gives journey times slightly lower than those seen in the Do-Minimum scenario.

Table 5-12 PM Peak - Comparison of Journey Times

| Scheme | Average | d Journ | me / mm |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No ODR | Route | DoMin | Option 1 | Option 2 | Option 3 | Option 4 |
|  | 1 | 30:41 | 37:21 | 36:52 | 34:43 | 37:18 |
|  | 2 | 24:48 | 28:26 | 29:01 | 27:19 | 28:33 |
|  | 3 | 25:10 | 29:22 | 29:22 | 29:09 | 31:11 |
|  | 4 | 25:16 | 28:32 | 29:23 | 26:40 | 28:45 |
|  | 5 | - | - | - | - | - |
|  | 6 | 36:54 | 44:38 | 45:39 | 41:39 | 44:32 |
|  | 7 | 25:13 | 27:55 | 27:51 | 28:43 | 29:36 |
|  | 8 | 26:44 | 30:03 | 30:12 | 29:26 | 30:02 |
|  | Total | 194:46 | 226:18 | 228:20 | 217:40 | 229:56 |
|  |  |  |  |  |  |  |
| Western ODR | 1 | 26:15 | 28:43 | 31:14 | 29:23 | 28:49 |
|  | 2 | 21:34 | 23:03 | 25:24 | 24:00 | 22:59 |
|  | 3 | 23:44 | 25:35 | 26:45 | 25:47 | 25:12 |
|  | 4 | 22:00 | 23:41 | 25:36 | 24:26 | 23:15 |
|  | 5 | - | - | - | - | - |
|  | 6 | 33:07 | 36:55 | 41:43 | 37:43 | 36:14 |
|  | 7 | 22:01 | 24:59 | 25:16 | 25:30 | 24:23 |
|  | 8 | 24:45 | 26:42 | 28:59 | 26:53 | 26:45 |
|  | Total | 173:25 | 189:37 | 204:57 | 193:42 | 187:36 |
|  |  |  |  |  |  |  |
| Eastern ODR | 1 | 24:37 | 28:23 | 28:28 | 27:22 | 28:46 |
|  | 2 | 20:33 | 22:06 | 23:27 | 21:50 | 23:44 |
|  | 3 | 22:07 | 24:20 | 24:35 | 23:43 | 24:47 |
|  | 4 | 21:38 | 22:45 | 24:06 | 22:31 | 23:42 |
|  | 5 | 00:00 | 00:00 | 00:00 | 00:00 | 00:00 |
|  | 6 | 30:15 | 34:42 | 36:26 | 33:07 | 36:30 |
|  | 7 | 21:59 | 25:04 | 25:37 | 24:43 | 24:33 |
|  | 8 | 23:00 | 25:33 | 25:54 | 24:39 | 26:01 |
|  | Total | 164:09 | 182:53 | 188:33 | 177:55 | 188:03 |

source: SATURN models
5.129 A similar effect is seen in the PM Peak, but in this case the impact of the ODR is more pronounced, with the sample journey times falling to levels well below those of the Do-Minimum in most cases. In the Do-Something Demand Option 2, however, the sample journey times are generally higher than in the Do-Minimum Demand and No ODR case/
5.130 In both the AM and PM models, the Eastern ODR with Demand Option 3 gives the lowest total time for the seven sampled routes.

## Impact on A49 Trunk Road

5.131 In order to assess the impact of the various development and infrastructure options on the operation of the A49 Trunk Road, journey times for a route running along the A49 between the priority junction at Portway and the priority junction near Pipe and Lyde, in both directions, were extracted from each SATURN highway model. The route is shown in Figure 5-3 below.

Figure 5-3 - A49 journey time route

5.132 Modelled journey times from the AM models are shown in Table 5-13.

Table 5-13 Comparison of Modelled Journey Times on A49 - AM Peak

| Network Scenario | Direction | Modelled Journey Time / mm:ss |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DoMinimum | DS1 | DS2 | DS3 | DS4 |
| No ODR | NB | 15:32 | 16:43 | 18:01 | 16:46 | 17:59 |
|  | SB | 13:52 | 17:33 | 17:13 | 17:02 | 17:16 |
| West ODR | NB | 14:28 | 15:08 | 15:33 | 15:05 | 15:35 |
|  | SB | 12:53 | 14:27 | 13:50 | 14:22 | 14:07 |
| East ODR | NB | 14:27 | 14:59 | 14:59 | 15:01 | 15:03 |
|  | SB | 12:54 | 14:38 | 14:07 | 14:36 | 14:10 |

SATURN model
5.133 It can be seen that, in the No ODR scenarios, addition of the extra demand cause journey times on the A49 to increase, with the increases being more pronounced in the southbound direction. The addition of the ODR on the western alignment leads to journey times reducing back to a level seen

| Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

in the No ODR - Do-Minimum scenario. Provision of the Eastern ODR also sees the journey times on the A49 falling to around the levels seen in the No ODR - Do-Minimum scenario.
5.134 The corresponding results from the PM Peak models are shown in Table 5-14.

Table 5-14 Comparison of Modelled Journey Times on A49 - PM Peak

| Network <br> Scenario | Direction | Modelled Journey Time / mm:ss |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DoMinimum | DS1 | DS2 | DS3 | DS4 |
| No ODR | NB | 16:44 | 19:00 | 19:17 | 18:15 | 19:52 |
|  | SB | 15:42 | 16:37 | 17:53 | 15:47 | 17:01 |
| West ODR | NB | 15:23 | 16:06 | 16:24 | 16:03 | 16:09 |
|  | SB | 13:46 | 14:20 | 16:23 | 15:03 | 14:26 |
| East ODR | NB | 15:33 | 16:37 | 16:25 | 16:18 | 16:37 |
|  | SB | 13:12 | 13:53 | 15:00 | 13:49 | 15:05 |

5.135 As in the AM Peak, the additional demand associated with the Do-Something development scenarios leads to journey times increasing in the No ODR scenarios. The increases are pronounced in the northbound direction, however, where increases of two to three minutes are seen. Provision of the Western ODR leads to the journey times falling to below those seen in the No ODR - Do-Minimum scenario in most development scenarios. In Do-Something Option 2, however, provision of the Western ODR does reduce southbound journey times, but not to the level of those seen in the No ODR - Do-Minimum. Provision of the Eastern ODR actually reduces journey times on the A49 to levels seen in the No ODR - Do-Minimum regardless of the development scenario.

## Over-Capacity Junctions

5.136 In the highway model, delays and queues at junctions are modelled explicitly. Junction which is operating at, or close to, its nominal capacity is likely to impose delays on vehicles using it.
5.137 The volume-to-capacity ratio is often used to denote how close to capacity a particular junction is. Because the techniques used to estimate a junction's capacity were derived using statistical modelling techniques, there is always a degree of uncertainty regarding a calculation of a junction's capacity. For this reason, a junction operating at $85 \%$ of its calculated capacity is generally considered to be „congested', as although it might appear to be operating within its calculated capacity, its actual capacity could be somewhat lower.
5.138 The SATURN models were interrogated in order to obtain the volume-to-capacity ratio at each modelled junction. Junctions operating at $85 \%$ of capacity and above are divided into three bands

- $85 \%$ to $100 \%$ - operating at or close to capacity, delays are to be expected;
- $100 \%$ to $120 \%$ - operating over-capacity, delays are likely to be considerable; and
- $120 \%$ and over - operating significantly over-capacity, delays will be considerable and could lead to widespread queuing.
5.139 The numbers of modelled junctions within each volume-to-capacity band are shown in Table 5-15 for the AM Peak models and in Table 5-16 for the PM peak models. Figures showing the locations of the over-capacity junctions are shown in Appendix D.

Table 5-15 Over Capacity Junctions - AM Peak

| Volume to Capacity Ratio | Do Minimum |  |  | Option 1 |  |  | Option 2 |  |  | Option 3 |  |  | Option 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | $\begin{aligned} & \hline \text { East } \\ & \text { ODR } \end{aligned}$ | No ODR | West ODR | East ODR |
| 85\% to 100\% | 19 | 16 | 13 | 36 | 24 | 23 | 37 | 20 | 25 | 35 | 22 | 20 | 36 | 19 | 25 |
| 100\% to 120\% | 7 | 1 | 0 | 21 | 11 | 5 | 19 | 9 | 7 | 15 | 8 | 4 | 17 | 10 | 5 |
| 120\% and over | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 26 | 17 | 13 | 57 | 35 | 28 | 56 | 29 | 32 | 50 | 30 | 24 | 53 | 29 | 30 |

source: SATURN model

Table 5-16 Over Capacity Junctions - PM Peak

| Volume to | Do Minimum |  |  | Option 1 |  |  | Option 2 |  |  | Option 3 |  |  | Option 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR |
| 85\% to 100\% | 21 | 16 | 19 | 25 | 23 | 21 | 26 | 23 | 17 | 22 | 21 | 19 | 26 | 25 | 16 |
| 100\% to 120\% | 15 | 8 | 5 | 25 | 12 | 15 | 24 | 15 | 17 | 27 | 13 | 11 | 24 | 8 | 16 |
| 120\% and over | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Total | 36 | 24 | 24 | 51 | 35 | 36 | 51 | 38 | 34 | 49 | 34 | 30 | 51 | 33 | 32 |

source: SATURN model
Table 5-17 Over Capacity Junctions - Both Peaks

| Volume to | Do Minimum |  |  | Option 1 |  |  | Option 2 |  |  | Option 3 |  |  | Option 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ratio | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR | No ODR | West ODR | East ODR |
| 85\% to 100\% | 40 | 32 | 32 | 61 | 47 | 44 | 63 | 43 | 42 | 57 | 43 | 39 | 62 | 44 | 41 |
| 100\% to 120\% | 22 | 9 | 5 | 46 | 23 | 20 | 43 | 24 | 24 | 42 | 21 | 15 | 41 | 18 | 21 |
| 120\% and over | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Total | 62 | 41 | 37 | 108 | 70 | 64 | 107 | 67 | 66 | 99 | 64 | 54 | 104 | 62 | 62 |

source: SATURN model
5.140 Examination of these results shows that provision of an ODR on either alignment leads to a reduction in the number of over-capacity junctions. There is little to choose between the two alignments in terms of reducing the number of over-capacity junctions, however.

## 6 Determination of Preferred Option

## Do-Minimum Case

6.141 The Do-Minimum Case represents a situation where the changes in demand for travel are in line with the TEMPRO forecasts and the only changes to the highway network are those associated with the Edgar Street Grid proposals.
6.142 In this case, demand for travel by car in the modelled area in the forecast year of 2026 is estimated to be around $10 \%$ higher than at present. This will lead to a worsening of congestion and a reduction in network speeds.
6.143 In the AM Peak, particular problems are expected to occur on Blue School Street, Edgar Street, Newtown Road and Commercial Street. The signalised junction at the southern end of the Victoria Street Bridge is also forecast to experience congestion problems.
6.144 In the PM Peak, congestion is forecast at the same locations, and on Belmont Road and Roman Road.
6.145 The SATURN models show that in the Do-Minimum scenario average network speeds, in the simulated area, are forecast to be 31 kph in the AM peak and 28 kph in the PM.

## Growth Point Demand with No Highway Improvements

6.146 If the additional demand associated housing and employment allocations is added to the model, the highway conditions are forecast to become much worse, with widespread congestion and low network speeds. This is not unexpected, as the allocations are forecast to increase demand for travel by car by around $20 \%$ in each peak period.
6.147 In the AM peak, particular problems of congestion are forecast on Roman Road, Holmer Road, Newtown Road, Blue School Street, Victoria Street and Belmont Road. The locations of particular congestion hot-spots are dependent on the actual distribution of the housing and employment sites. Reference should be made to the plots shown in Appendix E.
6.148 The PM peak shows more widespread congestion and lower network speeds.
6.149 Network speeds, within the simulated area, are forecast to fall to by around $10 \%$, compared to the case without the additional demand.

## Growth Point Demand with Outer Distributor Road on Western Alignment

6.150 The addition of an Outer Distributor Road on the Western alignment is an effective measure for reducing the congestion problems caused by the additional demand for travel.
6.151 In the AM, the addition of the road leads to a fall in total travel time in the simulated area of around $10 \%$ to $13 \%$ (depending on which Do-Something Demand Scenario is selected). Average network speeds rise from around 27 kph to 35 kph . The total distance travelled within the simulated area is forecast to rise by around $15 \%$ with the addition of the road.

| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| 54 | MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

6.152 A similar impact is seen in the PM Peak, with total travel time also falling by around 10\%, and average network speeds rising from around 26 kph to 33 kph (depending on which development scenario is chosen), and total distance rising by $17 \%$.
6.153 These figures suggest that the ODR is successful in alleviating some of the congestion, as some trips change routes to achieve a reduction in journey time. This is at the expense of having a slightly longer (in terms of distance) journey.
6.154 In the Do-Something Demand Option 2, the addition of the road only has a minor impact on the total travel time.

## Growth Point Housing with Outer Distributor Road on Eastern Alignment

6.155 The addition of an Outer Distributor Road on the eastern alignment is also forecast to alleviate the congestion problems caused by the additional demand for travel.
6.156 In the AM models, the reduction in total travel time compared to the situation without the road is around $13 \%$, whilst in the PM it is around $10 \%$.

## Preferred Development Option

6.157 The determination of the preferred development option was undertaken by calculating the total generalised cost of travel in each highway network. The total cost of travel is calculated by taking into account the time spent travelling (summed over all modelled vehicles) and the distance travelled (again summed over all vehicles). In effect, the travel cost is a combination of time and distance. This means that the option which produces the lowest overall travel time is not necessarily the option that produces the lowest overall cost of travel.
6.158 The costs for the AM peak model were then added to those of the PM peak model.
6.159 For the situation without an ODR, the total generalised costs of travel are shown in Table 6-1 below.

Table 6-1 Total Costs of Travel - No ODR

| Period | Total Generalised Cost of Travel / Hours of Generalised Time |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Option 1 | Option 2 | Option 3 | Option 4 |
| AM | 18,017 | 18,008 | 17,743 | 18,019 |
| PM | 19,345 | 19,445 | 19,010 | 19,435 |
| Total | $\mathbf{3 7 , 3 6 2}$ | $\mathbf{3 7 , 4 5 3}$ | $\mathbf{3 6 , 7 5 3}$ | $\mathbf{3 7 , 4 5 4}$ |

SATURN models
6.160 As can be seen, in the situation without an ODR, the Demand Option that provides the lowest overall cost of travel is Option 3 (North-South focus).
6.161 With an ODR on the Western Alignment, the total costs of travel are shown in Table 6-2 below.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | 55 |

Table 6-2 Total Costs of Travel - ODR West

| Period | Total Generalised Cost of Travel / Hours of Generalised Time |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Option 1 | Option 2 | Option 3 | Option 4 |
| AM | 16,915 | 16,902 | 16,849 | 16,919 |
| PM | 17,904 | 18,291 | 17,974 | 17,896 |
| Total | 34,819 | 35,193 | 34,823 | 34,815 |

SATURN models
6.162 It can be seen the Demand Option 4 (dispersed development) provides the lowest overall travel cost with the Western ODR in place, although there is very little difference between Options 1, 3 and 4.
6.163 Finally, with an ODR on the Eastern Alignment, the total costs of travel are as shown in Table 6-3 below.

Table 6-3 Total Costs of Travel - ODR East

| Period | Total Generalised Cost of Travel / Hours of Generalised Time |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Option 1 | Option 2 | Option 3 | Option 4 |
| AM | 16,549 | 16,571 | 16,430 | 16,559 |
| PM | 17,549 | 17,687 | 17,412 | 17,673 |
| Total | 34,098 | 34,258 | 33,842 | $\mathbf{3 4 , 2 3 2}$ |

6.164 Demand Option 3 provides the lowest overall travel cost in an Eastern ODR in place.
6.165 Of all the modelled scenarios, the situation with Demand Option 3 and an ODR on the Eastern Alignment provides the lowest overall travel cost. This, therefore, is the preferred option by this measure.

## Overall Preferred Option

6.166 As mentioned above, the Option that provides the lowest overall travel cost is Demand Option 3 with an ODR on the Eastern Alignment.

## Flow Differences

6.167 Compared to the situation with Demand Option 3, but without an ODR, the addition of the Eastern ODR leads to significant changes in traffic flows. In the AM Peak, reductions in flows are forecast on Belmont Road, Ross Road, Holme Lacy Road, Victoria Street, Edgar Street and College Road. Slight increases in flow are forecast for Aylestone Hill and Hampton Park Road. A visual indication of the changes in flow is shown in Figure 6-1 below. Green links experience an increase in usage with the addition of the ODR, whilst blue links experience a reduction in usage.

Figure 6-1- Changes in Flow (ODR East vs No ODR, Demand Option 3) - AM Peak

6.168 A similar impact is seen in the PM Peak model, as shown in Figure 6-2 below.

Figure 6-2 - Changes in Flow (ODR East vs No ODR, Demand Option 3) - PM Peak


## Stress (Junction Volume to Capacity Ratios)

6.169 Addition of the ODR on the eastern alignment is forecast to lead to a fall in the numbers of junctions that are operating beyond their nominal capacity, compared to the situation without the road, as shown in Table 6-4 below.

Table 6-4 Over-Capacity Junctions - East ODR vs No ODR - Option 3

| Time Period | Volume to Capacity Ratios |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 85\% to 100\% |  |  | 100\% to 120\% |  |  | 120\% and over |  |  |
|  | No ODR | $\begin{aligned} & \text { ODR } \\ & \text { East } \end{aligned}$ | Change | $\begin{aligned} & \text { No } \\ & \text { ODR } \end{aligned}$ | ODR <br> East | Change | No ODR | ODR <br> East | Change |
| AM Peak | 35 | 20 | -15 | 15 | 4 | -11 | 0 | 0 | 0 |
| PM Peak | 22 | 19 | -3 | 27 | 11 | -16 | 0 | 0 | 0 |
| Total | 57 | 39 | -18 | 42 | 15 | -27 | 0 | 0 | 0 |

source: SATURN models
6.170 As can be seen in Figure 6-3 below, in the AM Peak, the junctions that are forecast to operating at over $85 \%$ of capacity are on key routes in and around the city centre. This suggests that some remedial work may be required at these junctions in the future even if the ODR is built.

Figure 6-3 : Junctions operating at $\mathbf{> 8 5 \%}$ of capacity - AM Peak

6.171 In the PM Peak model, there are more junctions that are forecast to be operating at greater than $85 \%$ capacity than in the AM, again suggesting that some remedial work may be required in order to reduce congestion.

Figure 6-4 - Junctions operating at $\mathbf{> 8 5 \%}$ of capacity - PM Peak


## Overall Ranking

6.172 All of the twelve options were ranked against a number of performance indicators i.e. average speed, link delays, queues, journey time, junction stress, travel cost etc to identify the best in both AM and PM peak. The values of these indicators have been taken from the results tables that were reported in earlier sections. An average of both rankings was then calculated to show combined ranking as shown in Table 6.5. Details of ranking procedure have been provided in Appendix G.

Table 6.5 Recommended Options

| Criteria | AM Rank | PM Rank | Average <br> Rank |  |
| :--- | :--- | :--- | :--- | :--- |
|  | DS1 | 10 | 10 | 10 |
|  | DS2 | 9 | 12 | 11 |
|  | DS3 | 8 | 8 | $\mathbf{8}$ |
|  | DS4 | 9 | 11 | 10 |
| Western <br> ODR | DS1 | 7 | 4 | $\mathbf{6}$ |
|  | DS2 | 4 | 9 | $\mathbf{7}$ |
|  | DS3 | 5 | 5 | $\mathbf{5}$ |
|  | DS4 | 6 | 2 | $\mathbf{4}$ |
| Eastern <br> ODR | DS1 | 3 | 3 | $\mathbf{3}$ |
|  | DS2 | 5 | 7 | $\mathbf{6}$ |
|  | DS3 | 1 | 1 | $\mathbf{1}$ |
|  | DS4 | 2 | 6 | $\mathbf{4}$ |

## 7 Conclusions

7.173 This report has described the forecasting methodology for the Hereford Multi-Modal Model. The methodology is designed to produce forecasts of for a single future year of 2026, both with and without additional trips associated with the Growth Point housing.
7.174 Five Future Year demand scenarios have been modelled;

- Do-Minimum - with growth in travel demand forecast by TEMPRO
- Do-Something 1 to Do-Something 4 - with growth in travel demand forecast by TEMPRO, plus additional trips associated with the Growth Point housing and employment allocations - four different distributions of housing and employment have been tested.
7.175 The five demand scenarios have each been tested with three network scenarios;
- No ODR - a future-year network without an Outer Distributor Road;
- ODR West - a future-year network with an Outer Distributor Road on a Western alignment; and
- ODR East - a future year network with an Outer Distributor Road on an Eastern alignment.
7.176 The increase in travel demand, as forecast by TEMPRO, is forecast to worsen the congestion within the city of Hereford. Adding the additional trips associated with the Growth Point housing allocations will exacerbate these congestion problems, leading to longer journey times and extensive queuing.
7.177 Provision of an Outer Distributor Road, on either alignment, is forecast to provide relief from these congestion problems. By most measures, conditions on the highway network with the additional trips and an Outer Distributor Road are no worse than conditions under the Do-Minimum scenario.
7.178 Of the options tested, it is the option with an Outer Distributor Road on the Eastern Alignment and with the Do-Something Demand Option 3 (North-South focus) that produces the best overall highway network performance in terms of overall total cost of travel.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | 61 |

## Appendix A

Glossary

## Glossary

SATURN (Simulation and Assignment of Traffic to Urban Road Networks): is a suite of network analysis programs in use in the UK since 1981. It has 6 basic functions: a combined traffic simulation and assignment model; a "conventional" traffic assignment model for the analysis large networks; a simulation and assignment model of individual junctions; a network editor, database and analysis system; a matrix manipulation package for the production of, e.g. trip matrices; a trip matrix demand model covering the basic elements of trip distribution, modal split etc.

TEMPRO (Trip End Model Presentation Program): A computer program developed for DfT to present trip end, car ownership and population/workforce planning data output from a series of models developed for the Department for Transport (DfT)'s National Transport Model.

TRICS (Trip Rate Information Computer System): A powerful database to enable effective searching and filtering of the information collated from over 4,000 surveys, including detailed site information and an unprecedented amount of multi-modal survey data. The database is capable of complex trip rate calculations and graphical representation of rates and patterns. The annual survey programme is carefully targeted to reflect the development types of the future.

DIADEM (Dynamic Integrated Assignment and Demand Modelling): A variable demand model. It links highway assignment models to a variable demand model and provides a means of achieving convergence between assignment (supply) and demand models.

GIS (Geographic Information Systems): Captures, stores, analyzes, manages, and presents data that refers to or is linked to location.

TRIPS (Transport Improvement Planning System): the comprehensive transport modelling package, is specially designed for professional transport planners. As a widely applied planning system in the world, TRIPS has been continuously developed during past several decades. Same as other known transport planning packages, it is based on the classical four-step transport planning theory: (Trip) Production, Distribution, Modal choice and Assignment.

MVGRAM: Is a trip distribution model which offers the following principal functions: Calibration; Forecasting; Growth Factoring (Furness); Partial Matrix Technique.

| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Appendix B

## TEMPRO Growth Factors

| AM (0700 to 0959) | Walk |  | Cycle |  | Car Driver |  | Car Passenger |  | Bus/Coach |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Origin | Destinatiol | Origin | Destinatic | Origin | Destinatic | Origin | Destinatic | Origin | Destinatiol |
| Rural Herefordshire | 1.123 | 1.102 | 1.103 | 1.054 | 1.150 | 1.122 | 1.129 | 1.109 | 1.083 | 1.053 |
| Great Malvern (part of) | 1.061 | 1.054 | 1.035 | 1.034 | 1.141 | 1.116 | 1.068 | 1.077 | 0.990 | 1.014 |
| Leominster | 1.023 | 1.040 | 1.000 | 1.032 | 1.107 | 1.111 | 1.060 | 1.077 | 0.982 | 1.010 |
| Ross-on-Wye | 1.034 | 1.042 | 1.007 | 1.040 | 1.098 | 1.110 | 1.055 | 1.076 | 0.990 | 1.017 |
| Ledbury | 1.032 | 1.041 | 1.010 | 1.028 | 1.103 | 1.110 | 1.057 | 1.077 | 0.990 | 1.022 |
| Bromyard | 1.026 | 1.040 | 0.996 | 1.056 | 1.107 | 1.108 | 1.052 | 1.075 | 0.980 | 1.020 |
| Hereford | 0.983 | 1.021 | 0.967 | 1.006 | 1.065 | 1.097 | 1.024 | 1.057 | 0.951 | 0.985 |
| GB | 1.057 | 1.057 | 1.050 | 1.050 | 1.173 | 1.173 | 1.146 | 1.146 | 1.029 | 1.029 |


| PM (1600 to 1859) | Walk |  | Cycle |  | Car Driver |  | Car Passenger |  | Bus/Coach |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Origin | Destin | Origin | Destin | Origin | Desti | Origin | Destin | Origin | Destinatio |
| Rural | 1.170 | 1.131 | 1.126 | 1.092 | 1.174 | 1.157 | 1.147 | 1.130 | 1.119 | 1.076 |
| Great Malvern (part of) | 1.126 | 1.104 | 1.049 | 1.072 | 1.170 | 1.139 | 1.096 | 1.108 | 1.041 | 1.057 |
| Leominster | 1.079 | 1.105 | 1.032 | 1.064 | 1.132 | 1.138 | 1.082 | 1.100 | 1.024 | 1.042 |
| Ross-on-Wye | 1.091 | 1.103 | 1.042 | 1.064 | 1.129 | 1.136 | 1.080 | 1.098 | 1.044 | 1.041 |
| Ledbury | 1.091 | 1.103 | 1.042 | 1.064 | 1.129 | 1.136 | 1.080 | 1.098 | 1.044 | 1.041 |
| Bromyard | 1.089 | 1.099 | 1.035 | 1.062 | 1.135 | 1.132 | 1.078 | 1.095 | 1.035 | 1.037 |
| Hereford | 1.035 | 1.091 | 0.991 | 1.045 | 1.090 | 1.123 | 1.044 | 1.084 | 0.990 | 1.030 |
| GB | 1.120 | 1.120 | 1.083 | 1.083 | 1.278 | 1.278 | 1.173 | 1.173 | 1.002 | 1.002 |


| Page | Job No | Report No | Issue no | Report Name |
| :--- | :--- | :--- | :--- | :--- |
| B2 | MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |

## Appendix C

Link Flows

## Do-Minimum Demand Option

Link Flows: No ODR - Do-Minimum Demand: AM Peak


Link Flows: ODR West - Do-Minimum Demand: AM Peak


Link Flow Comparison: ODR West vs No ODR - Do-Minimum Demand: AM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

Link Flows: ODR East - Do-Minimum Demand: AM Peak


Link Flow Comparison - ODR East vs No ODR - Do-Minimum Demand: AM Peak


## Link Flows: No ODR - Do-Minimum Demand: PM Peak



Link Flows: ODR West - Do-Minimum Demand: PM Peak


Link Flows Comparison: ODR West vs No ODR - Do-Minimum Demand: PM Peak


Link Flows: ODR East - Do-Minimum Demand: PM Peak


Link Flows Comparison ODR East vs No ODR - Do-Minimum Demand: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | C7 |

## Do-Something Demand Option 1

Link Flows: No ODR - Demand Option 1: AM Peak


## Link Flows: ODR West - Demand Option 1: AM Peak



Link Flows Comparison: ODR West vs No ODR - Demand Option 1: AM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Link Flows: ODR East - Demand Option 1: AM Peak



Link Flow Comparison - ODR East vs No ODR - Demand Option 1: AM Peak


## Link Flows: No ODR - Demand Option 1: PM Peak



## Link Flows: ODR West - Demand Option 1: PM Peak



Link Flows Comparison: ODR West vs No ODR - Demand Option 1: PM Peak


## Link Flows: ODR East - Demand Option 1: PM Peak



Link Flows Comparison ODR East vs No ODR - Demand Option1: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Do-Something Demand Option 2

Link Flows: No ODR - Demand Option 2: AM Peak


Link Flows: ODR West - Demand Option 2: AM Peak


Link Flows Comparison: ODR West vs No ODR - Demand Option 2: AM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | C15 |

## Link Flows: ODR East - Demand Option 2: AM Peak



Link Flows Comparison - ODR East vs NO ODR - Demand Option 2: AM Peak


## Link Flows: No ODR - Demand Option 2: PM Peak



Link Flows: ODR West - Demand Option 2: PM Peak


Link Flows Comparison: ODR West vs No ODR - Demand Option 2: PM Peak


## Link Flows: ODR East - Demand Option 2: PM Peak



Link Flow Comparison: ODR East vs No ODR - Demand Option 2: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Do-Something Demand Option 3

Link Flows: No ODR - Demand Option 3: AM Peak


Link Flows: ODR West - Demand Option 3: AM Peak


Link Flows Comparison: ODR West vs No ODR - Demand Option 3: AM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | C21 |

## Link Flows: ODR East - Demand Option 3: AM Peak



Link Flow Comparison: ODR East vs No ODR - Demand Option 3: AM Peak


## Link Flows: No ODR - Demand Option 3: PM Peak



## Link Flows: ODR West - Demand Option 3: PM Peak



Link Flows Comparison: ODR West vs No ODR - Demand Option 3: PM Peak


## Link Flows: ODR East - Demand Option 3: PM Peak



Link Flow Comparison: ODR East vs No ODR - Demand Option 3: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Do-Something Demand Option 4

Link Flows: No ODR - Demand Option 4: AM Peak


Link Flows: ODR West - Demand Option 4: AM Peak


Link Flow Comparison: ODR West vs No ODR - Demand Option 4: AM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

## Link Flows: ODR East - Demand Option 4: AM Peak



Link Flow Comparison: ODR East vs No ODR - Demand Option 4: AM Peak


## Link Flows: No ODR - Demand Option 4: PM Peak



Link Flows: ODR West - Demand Option 4: PM Peak


Link Flow Comparison: ODR West vs No ODR - Demand Option 4: PM Peak


## Link Flows: ODR East- Demand Option 4: PM Peak



Link Flow Comparison: ODR East vs No ODR - Demand Option 4: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | ---: |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model |  |

Appendix D

## Stress (Volume/Capacity)

Key to Junction Stress Diagrams

| over $120 \%$ |
| :--- |
| $85 \%$ to $100 \%$ |

## Do-Minimum Demand Option

Volume-Capacity Ratio at Junctions - No ODR - Do-Minimum Demand - AM Peak


Volume-Capacity Ratio at Junctions -ODR West - Do-Minimum Demand - AM Peak


## Volume-Capacity Ratio at Junctions - ODR East - Do-Minimum Demand - AM Peak



Volume-Capacity Ratio at Junctions - No ODR - Do-Minimum Demand - PM Peak


## Volume-Capacity Ratio at Junctions - ODR West - Do-Minimum Demand - PM Peak



Volume-Capacity Ratio at Junctions - ODR East - Do-Minimum Demand - PM Peak


## Do-Something Demand Option 1

Volume-Capacity Ratio at Junctions - No ODR - Demand Option 1 - AM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 1 - AM Peak


## Volume-Capacity Ratio at Junctions - ODR East - Demand Option 1 - AM Peak



Volume-Capacity Ratio at Junctions - No ODR - Demand Option 1 - PM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 1 - PM Peak


Volume-Capacity Ratio at Junctions - ODR East - Demand Option 1 - PM Peak


## Do-Something Demand Option 2

Volume-Capacity Ratio at Junctions - No ODR - Demand Option 2 - AM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 2 - AM Peak


## Volume-Capacity Ratio at Junctions - ODR East - Demand Option 2 - AM Peak



Volume-Capacity Ratio at Junctions - No ODR - Demand Option 2 - PM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 2 - PM Peak


Volume-Capacity Ratio at Junctions - ODR East - Demand Option 2 - PM Peak


## Do-Something Demand Option 3

Volume-Capacity Ratio at Junctions - No ODR - Demand Option 3 - AM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 3 - AM Peak


## Volume-Capacity Ratio at Junctions - ODR East - Demand Option 3 - AM Peak



Volume-Capacity Ratio at Junctions - No ODR - Demand Option 3 - PM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 3 - PM Peak


Volume-Capacity Ratio at Junctions - ODR East - Demand Option 3 - PM Peak


## Do-Something Demand Option 4

Volume-Capacity Ratio at Junctions - No ODR - Demand Option 4 - AM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 4 - AM Peak


## Volume-Capacity Ratio at Junctions - ODR East - Demand Option 4 - AM Peak



Volume-Capacity Ratio at Junctions - No ODR - Demand Option 4 - PM Peak


Volume-Capacity Ratio at Junctions - ODR West -Demand Option 4 - PM Peak


Volume-Capacity Ratio at Junctions - ODR East - Demand Option 4 - PM Peak


## Appendix E

Link Speed

Key to Link Speed Diagrams

|  |
| :--- |
| $\quad$$<20 \mathrm{kph}$ <br> 20 kph to 40kph <br> 40kph to 60kph <br> 60kph and above |

## Do-Minimum Demand Option

Link Speed: No ODR - Do-Minimum Demand: AM Peak


Link Speed: ODR West - Do-Minimum Demand: AM Peak


## Link Speed: ODR East - Do-Minimum Demand: AM Peak



Link Speed: No ODR - Do-Minimum Demand: PM Peak


## Link Speed: ODR West - Do-Minimum Demand: PM Peak



Link Speed: ODR East - Do-Minimum Demand: PM Peak


## Do-Something Demand Option 1

Link Speed: No ODR - Demand Option 1: AM Peak


Link Speed: ODR West - Demand Option 1: AM Peak


## Link Speed: ODR East - Demand Option 1: AM Peak



Link Speed: No ODR - Demand Option 1: PM Peak


## Link Speed: ODR West - Demand Option 1: PM Peak



Link Speed: ODR East - Demand Option 1: PM Peak


## Do-Something Demand Option 2

Link Speed: DMH2 scenario: AM Peak


Link Speed: ODR West - Demand Option 2: AM Peak


Link Speed: ODR East - Demand Option 2: AM Peak


Link Speed: DMH2 scenario: PM Peak


Link Speed: ODR West - Demand Option 2: PM Peak


Link Speed: ODR East - Demand Option 2: PM Peak


## Do-Something Demand Option 3

Link Speed: No ODR - Demand Option 3: AM Peak


Link Speed: ODR West - Demand Option 3: AM Peak


Link Speed: ODR East - Demand Option 3: AM Peak


Link Speed: No ODR - Demand Option 3: PM Peak


| Job No | Report No | Issue no | Report Name | Page |
| :--- | :--- | :--- | :--- | :--- |
| MID2517-A | 1 | $4 a$ | Hereford Multi-Modal Model | E15 |

Link Speed: ODR West - Demand Option 3: PM Peak


Link Speed: ODR East - Demand Option 3: PM Peak


## Do-Something Demand Option 4

Link Speed: No ODR - Demand Option 4: AM Peak


Link Speed: ODR West - Demand Option 4: AM Peak


Link Speed: ODR East - Demand Option 4: AM Peak


Link Speed: No ODR - Demand Option 4: PM Peak


## Link Speed: ODR West - Demand Option 4: PM Peak



Link Speed: ODR East - Demand Option 4: PM Peak


## Appendix F

ODR Impact Calculation
F. 1 West ODR Impact Table during AM peak

|  |  |  |  | West ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 1 | A49 north of Holmer | A49 | NB | -146 | -98 | -121 | -124 | -119 |
| 1 | A49 north of Holmer | A49 | SB | 41 | 49 | 99 | 82 | 61 |
| 2 | Holmer Road opp Racecourse | A49 | NB | -114 | -176 | -191 | -205 | -194 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 57 | 45 | 51 | 39 | 58 |
| 3 | Newtown Road | A49 | EB | -201 | -78 | -87 | -26 | -81 |
| 3 | Newtown Road | A49 | WB | -170 | -98 | -125 | -135 | -154 |
| 4 | Edgar Street at Football Ground | A49 | NB | -148 | -6 | -18 | -31 | -38 |
| 4 | Edgar Street at Football Ground | A49 | SB | -199 | -236 | -237 | -73 | -214 |
| 5 | Victoria Street | A49 | NB | -270 | -151 | -151 | -215 | -111 |
| 5 | Victoria Street | A49 | SB | -367 | -457 | -437 | -371 | -417 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | -183 | -120 | -102 | -237 | -119 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | -9 | -74 | -51 | -19 | 3 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | -147 | -147 | -147 | -320 | -137 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | -67 | -106 | -90 | -90 | -90 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | -26 | -69 | -57 | -60 | -59 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | -106 | -106 | -112 | -291 | -105 |
|  | Total Flow Reduction | A49 | NB | -1204 | -865 | -912 | -1327 | -931 |
|  |  | A49 | SB | -851 | -963 | -864 | -749 | -785 |
| 10 | Roman Road east of A49 | A4103 | EB | -316 | -419 | -490 | -480 | -428 |
| 10 | Roman Road east of A49 | A4103 | WB | -205 | -236 | -275 | -258 | -285 |
| 11 | Roman Road west of A49 | A4103 | EB | -137 | -126 | -107 | -133 | -116 |
| 11 | Roman Road west of A49 | A4103 | WB | -121 | -75 | -41 | -60 | -77 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | -245 | -265 | -273 | -215 | 0 |
| 12 | Roman Road nr Staniers Way | A4103 | WB | -96 | -175 | -130 | -141 | 0 |
|  | Total Flow Reduction | A4103 | EB | -698 | -810 | -870 | -828 | -544 |
|  |  | A4103 | WB | -422 | -486 | -446 | -459 | -362 |
| 13 | Alyestone Hill | A465 | NB | 91 | 152 | 136 | 138 | 140 |
| 13 | Alyestone Hill | A465 | SB | 36 | 120 | 95 | 112 | 123 |
| 14 | Commercial Road at Bus Station | A465 | NB | -21 | -46 | -69 | -16 | -68 |
| 14 | Commercial Road at Bus Station | A465 | SB | -35 | 2 | -5 | -14 | -7 |
| 15 | Belmont Road | A465 | EB | -125 | -126 | -124 | -138 | -107 |
| 15 | Belmont Road | A465 | WB | -115 | -152 | -169 | -159 | -171 |
|  | Total Flow Reduction | A49 | N/EB | -55 | -20 | -57 | -16 | -35 |
|  |  | A49 | S/WB | -114 | -30 | -79 | -61 | -55 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | -22 | -21 | -20 | -23 | -23 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | 13 | 4 | 7 | 2 | 12 |
| 17 | Blue School Street | A438 | EB | -43 | 5 | 17 | -7 | 4 |


|  |  |  |  | West ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 17 | Blue School Street | A438 | WB | -24 | -18 | -27 | -18 | -22 |
| 18 | Eign Street | A438 | EB | -227 | -61 | -107 | -125 | -99 |
| 18 | Eign Street | A438 | WB | 21 | 119 | 136 | 200 | 197 |
| 19 | Kings Acre Road | A438 | EB | -23 | -140 | -117 | -188 | -151 |
| 19 | Kings Acre Road | A438 | WB | 42 | 76 | 118 | -7 | 87 |
|  | Total Flow Reduction | A49 | N/EB | -315 | -217 | -227 | -343 | -269 |
|  |  | A49 | S/WB | 52 | 181 | 234 | 177 | 274 |
| 20 | Three Elms Road | A4110 | NB | -88 | -217 | -239 | -179 | -204 |
| 20 | Three Elms Road | A4110 | SB | -268 | -141 | -132 | -116 | -192 |
| 21 | ESG Link Road |  | EB | -83 | -69 | -38 | -94 | -60 |
| 21 | ESG Link Road |  | WB | -33 | -21 | -30 | -13 | -26 |
| 22 | Hampton Park Road |  | EB | -23 | -48 | -46 | -42 | -44 |
| 22 | Hampton Park Road |  | WB | -22 | -52 | -71 | -14 | -80 |
| 23 | Holme Lacy Road |  | EB | -203 | -190 | -148 | -27 | -138 |
| 23 | Holme Lacy Road |  | WB | -48 | -35 | -43 | -107 | -43 |
| 24 | Rotherwas Access Road |  | EB | 269 | 374 | 244 | -3 | 228 |
| 24 | Rotherwas Access Road |  | WB | 91 | 142 | 121 | 13 | 124 |
|  | Total Flow Reduction | A49 | EB | -40 | 67 | 12 | -166 | -14 |
|  |  | A49 | WB | -12 | 34 | -23 | -121 | -25 |
| 25 | ODR at Eastern river crossing |  | NB | 0 | 0 | 0 | 0 | 0 |
| 25 | ODR at Eastern river crossing |  | SB | 0 | 0 | 0 | 0 | 0 |
| 26 | ODR at Lugg Meadows |  | NB | 0 | 0 | 0 | 0 | 0 |
| 26 | ODR at Lugg Meadows |  | SB | 0 | 0 | 0 | 0 | 0 |
| 27 | ODR at New Court |  | NB | 0 | 0 | 0 | 0 | 0 |
| 27 | ODR at New Court |  | SB | 0 | 0 | 0 | 0 | 0 |
| 28 | ODR at Shelwick Green |  | EB | 428 | 741 | 673 | 661 | 699 |
| 28 | ODR at Shelwick Green |  | WB | 361 | 468 | 448 | 495 | 448 |
| 29 | ODR at Lyde Arundel |  | EB | 762 | 1110 | 1115 | 1050 | 1088 |
| 29 | ODR at Lyde Arundel |  | WB | 424 | 625 | 599 | 647 | 610 |
| 30 | ODR nr Towtree Lane |  | EB | 183 | 359 | 343 | 279 | 329 |
| 30 | ODR nr Towtree Lane |  | WB | 147 | 239 | 235 | 256 | 239 |
| 31 | ODR nr Swainshill |  | NB | 478 | 875 | 853 | 683 | 813 |
| 31 | ODR nr Swainshill |  | SB | 447 | 599 | 552 | 612 | 567 |
| 32 | ODR at Western river crossing |  | NB | 418 | 526 | 573 | 467 | 589 |
| 32 | ODR at Western river crossing |  | SB | 580 | 931 | 883 | 713 | 867 |
| 33 | ODR nr Grafton |  | EB | 382 | 605 | 593 | 422 | 584 |
| 33 | ODR nr Grafton |  | WB | 306 | 407 | 487 | 342 | 499 |

F. 2 East ODR Impact Table during AM peak

|  |  |  |  | East ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 1 | A49 north of Holmer | A49 | NB | -21 | -38 | -36 | -31 | -47 |
| 1 | A49 north of Holmer | A49 | SB | 133 | 82 | 141 | 142 | 88 |
| 2 | Holmer Road opp Racecourse | A49 | NB | -62 | -53 | -98 | -59 | -76 |
| 2 | Holmer Road opp Racecourse | A49 | SB | 52 | -2 | 6 | 30 | 12 |
| 3 | Newtown Road | A49 | EB | -71 | -19 | -25 | 16 | -22 |
| 3 | Newtown Road | A49 | WB | -58 | 58 | 34 | 80 | 36 |
| 4 | Edgar Street at Football Ground | A49 | NB | -316 | -84 | -87 | -114 | -56 |
| 4 | Edgar Street at Football Ground | A49 | SB | -421 | -396 | -407 | -319 | -378 |
| 5 | Victoria Street | A49 | NB | -409 | -296 | -318 | -366 | -276 |
| 5 | Victoria Street | A49 | SB | -570 | -595 | -566 | -523 | -556 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | -390 | -308 | -299 | -404 | -300 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | -146 | -265 | -47 | -222 | -23 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | -167 | -156 | -226 | -230 | -213 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | -69 | -97 | -79 | -90 | -82 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | -24 | -56 | -59 | -46 | -64 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | -119 | -108 | -203 | -183 | -192 |
|  | Total Flow Reduction | A49 | NB | -1447 | -933 | -1089 | -1170 | -996 |
|  |  | A49 | SB | -1211 | -1400 | -1180 | -1149 | -1153 |
| 10 | Roman Road east of A49 | A4103 | EB | -335 | -355 | -437 | -450 | -369 |
| 10 | Roman Road east of A49 | A4103 | WB | -297 | -216 | -283 | -252 | -258 |
| 11 | Roman Road west of A49 | A4103 | EB | -109 | -97 | -66 | -78 | -119 |
| 11 | Roman Road west of A49 | A4103 | WB | -162 | -102 | -108 | -95 | -121 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | -178 | -138 | -168 | -164 | 0 |
| 12 | Roman Road nr Staniers Way | A4103 | WB | -139 | -159 | -143 | -159 | 0 |
|  | Total Flow Reduction | A4103 | EB | -622 | -590 | -671 | -692 | -488 |
|  |  | A4103 | WB | -598 | -477 | -534 | -506 | -379 |
| 13 | Alyestone Hill | A465 | NB | -87 | -30 | -22 | 28 | -9 |
| 13 | Alyestone Hill | A465 | SB | 9 | 40 | 58 | 56 | 58 |
| 14 | Commercial Road at Bus Station | A465 | NB | -80 | -99 | -95 | -91 | -102 |
| 14 | Commercial Road at Bus Station | A465 | SB | -27 | -50 | -41 | -34 | -49 |
| 15 | Belmont Road | A465 | EB | -98 | -162 | -113 | -146 | -94 |
| 15 | Belmont Road | A465 | WB | -115 | -148 | -164 | -193 | -161 |
|  | Total Flow Reduction | A49 | N/EB | -265 | -291 | -230 | -209 | -205 |
|  |  | A49 | S/WB | -133 | -158 | -147 | -171 | -152 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | -86 | -97 | -91 | -102 | -98 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | -76 | -144 | -155 | -112 | -151 |
| 17 | Blue School Street | A438 | EB | -40 | 12 | 8 | -36 | 13 |


|  |  |  |  | East ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 17 | Blue School Street | A438 | WB | -37 | -43 | -40 | -31 | -41 |
| 18 | Eign Street | A438 | EB | -140 | -22 | -24 | -90 | -21 |
| 18 | Eign Street | A438 | WB | 92 | 105 | 79 | 109 | 82 |
| 19 | Kings Acre Road | A438 | EB | 20 | -32 | -33 | -49 | -43 |
| 19 | Kings Acre Road | A438 | WB | -51 | 5 | 3 | -35 | -9 |
|  | Total Flow Reduction | A49 | N/EB | -246 | -139 | -140 | -277 | -149 |
|  |  | A49 | S/WB | -72 | -77 | -113 | -69 | -119 |
| 20 | Three Elms Road | A4110 | NB | -69 | -21 | -110 | -56 | -81 |
| 20 | Three Elms Road | A4110 | SB | -310 | -93 | -135 | -33 | -140 |
| 21 | ESG Link Road |  | EB | -66 | -103 | -83 | -92 | -81 |
| 21 | ESG Link Road |  | WB | -113 | -68 | -72 | -74 | -72 |
| 22 | Hampton Park Road |  | EB | 272 | 265 | 274 | 283 | 274 |
| 22 | Hampton Park Road |  | WB | 171 | 176 | 228 | 236 | 223 |
| 23 | Holme Lacy Road |  | EB | -319 | -337 | -296 | -214 | -294 |
| 23 | Holme Lacy Road |  | WB | -35 | 20 | 0 | 21 | -1 |
| 24 | Rotherwas Access Road |  | EB | 264 | 298 | 361 | 347 | 354 |
| 24 | Rotherwas Access Road |  | WB | 262 | 333 | 339 | 366 | 341 |
|  | Total Flow Reduction | A49 | EB | 151 | 123 | 256 | 324 | 253 |
|  |  | A49 | WB | 285 | 461 | 495 | 549 | 491 |
| 25 | ODR at Eastern river crossing |  | NB | 842 | 1052 | 1228 | 1014 | 1238 |
| 25 | ODR at Eastern river crossing |  | SB | 1241 | 1498 | 1492 | 1329 | 1497 |
| 26 | ODR at Lugg Meadows |  | NB | 687 | 815 | 862 | 752 | 865 |
| 26 | ODR at Lugg Meadows |  | SB | 797 | 960 | 935 | 846 | 941 |
| 27 | ODR at New Court |  | NB | 372 | 441 | 493 | 380 | 498 |
| 27 | ODR at New Court |  | SB | 543 | 642 | 623 | 512 | 632 |
| 28 | ODR at Shelwick Green |  | EB | 628 | 912 | 867 | 784 | 874 |
| 28 | ODR at Shelwick Green |  | WB | 446 | 565 | 611 | 580 | 609 |
| 29 | ODR at Lyde Arundel |  | EB | 928 | 1242 | 1254 | 1110 | 1178 |
| 29 | ODR at Lyde Arundel |  | WB | 544 | 702 | 733 | 705 | 723 |
| 30 | ODR nr Towtree Lane |  | EB | 102 | 179 | 179 | 122 | 162 |
| 30 | ODR nr Towtree Lane |  | WB | 104 | 143 | 144 | 139 | 141 |
| 31 | ODR nr Swainshill |  | NB | 0 | 0 | 0 | 0 | 0 |
| 31 | ODR nr Swainshill |  | SB | 0 | 0 | 0 | 0 | 0 |
| 32 | ODR at Western river crossing |  | NB | 0 | 0 | 0 | 0 | 0 |
| 32 | ODR at Western river crossing |  | SB | 0 | 0 | 0 | 0 | 0 |
| 33 | ODR nr Grafton |  | EB | 145 | 209 | 180 | 168 | 181 |
| 33 | ODR nr Grafton |  | WB | 239 | 286 | 311 | 328 | 311 |

F. 3 West ODR Impact Table during PM peak

|  |  |  |  | West ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 1 | A49 north of Holmer | A49 | NB | 52 | 84 | 47 | 132 | 84 |
| 1 | A49 north of Holmer | A49 | SB | -138 | -219 | -205 | -124 | -221 |
| 2 | Holmer Road opp Racecourse | A49 | NB | -27 | 60 | 92 | 93 | 73 |
| 2 | Holmer Road opp Racecourse | A49 | SB | -28 | -35 | -9 | 59 | 30 |
| 3 | Newtown Road | A49 | EB | -47 | 36 | 101 | 75 | 12 |
| 3 | Newtown Road | A49 | WB | -89 | -53 | -106 | -32 | -69 |
| 4 | Edgar Street at Football Ground | A49 | NB | -42 | -28 | 75 | 11 | -13 |
| 4 | Edgar Street at Football Ground | A49 | SB | 73 | 94 | 164 | 74 | 79 |
| 5 | Victoria Street | A49 | NB | -266 | -273 | -172 | -268 | -235 |
| 5 | Victoria Street | A49 | SB | -147 | -108 | -90 | -118 | -126 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | -428 | -527 | -449 | -500 | -508 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | -26 | -53 | -47 | -23 | -41 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | -280 | -425 | -348 | -375 | -374 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | -28 | 17 | -9 | -60 | -6 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 49 | 99 | 61 | 11 | 69 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | -195 | -331 | -264 | -295 | -288 |
|  | Total Flow Reduction | A49 | NB | -1031 | -1063 | -800 | -928 | -973 |
|  |  | A49 | SB | -536 | -599 | -359 | -412 | -561 |
| 10 | Roman Road east of A49 | A4103 | EB | -245 | -368 | -369 | -379 | -347 |
| 10 | Roman Road east of A49 | A4103 | WB | -407 | -327 | -281 | -357 | -390 |
| 11 | Roman Road west of A49 | A4103 | EB | -107 | -22 | -10 | -21 | -17 |
| 11 | Roman Road west of A49 | A4103 | WB | -100 | 34 | 56 | 42 | 31 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | -13 | -132 | -128 | -121 | 0 |
| 12 | Roman Road nr Staniers Way | A4103 | WB | -219 | -225 | -239 | -276 | 0 |
|  | Total Flow Reduction | A4103 | EB | -365 | -522 | -507 | -521 | -364 |
|  |  | A4103 | WB | -726 | -518 | -464 | -591 | -359 |
| 13 | Alyestone Hill | A465 | NB | -109 | 8 | 65 | 1 | -87 |
| 13 | Alyestone Hill | A465 | SB | 117 | 53 | 29 | 135 | 53 |
| 14 | Commercial Road at Bus Station | A465 | NB | 21 | 26 | 50 | 10 | -14 |
| 14 | Commercial Road at Bus Station | A465 | SB | -6 | -6 | -30 | -18 | -29 |
| 15 | Belmont Road | A465 | EB | -232 | -267 | -262 | -231 | -249 |
| 15 | Belmont Road | A465 | WB | -240 | -272 | -265 | -270 | -274 |
|  | Total Flow Reduction | A49 | N/EB | -320 | -233 | -147 | -220 | -350 |
|  |  | A49 | S/WB | -129 | -225 | -266 | -153 | -250 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | 23 | 0 | -3 | 16 | -1 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | -13 | 8 | -13 | 5 | -1 |
| 17 | Blue School Street | A438 | EB | 12 | 17 | 16 | 0 | 30 |


|  |  |  |  | West ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 17 | Blue School Street | A438 | WB | -66 | -90 | -77 | -28 | -67 |
| 18 | Eign Street | A438 | EB | -276 | -308 | -255 | -182 | -294 |
| 18 | Eign Street | A438 | WB | -177 | -160 | -168 | -165 | -157 |
| 19 | Kings Acre Road | A438 | EB | -37 | -109 | -76 | -180 | -106 |
| 19 | Kings Acre Road | A438 | WB | -34 | -67 | -113 | -261 | -126 |
|  | Total Flow Reduction | A49 | N/EB | -278 | -400 | -318 | -346 | -371 |
|  |  | A49 | S/WB | -290 | -309 | -371 | -449 | -351 |
| 20 | Three Elms Road | A4110 | NB | -131 | -320 | -273 | -228 | -188 |
| 20 | Three Elms Road | A4110 | SB | 73 | 102 | 174 | 12 | 60 |
| 21 | ESG Link Road |  | EB | -14 | 36 | -18 | -55 | -8 |
| 21 | ESG Link Road |  | WB | 12 | -2 | 2 | 1 | -18 |
| 22 | Hampton Park Road |  | EB | -17 | -22 | -34 | -34 | -41 |
| 22 | Hampton Park Road |  | WB | -67 | -90 | -101 | -60 | -102 |
| 23 | Holme Lacy Road |  | EB | -56 | -53 | -45 | -93 | -52 |
| 23 | Holme Lacy Road |  | WB | 25 | 156 | 167 | 72 | 129 |
| 24 | Rotherwas Access Road |  | EB | 142 | 183 | 165 | 51 | 143 |
| 24 | Rotherwas Access Road |  | WB | 166 | 124 | 150 | 2 | 144 |
|  | Total Flow Reduction | A49 | EB | 55 | 144 | 68 | -131 | 42 |
|  |  | A49 | WB | 136 | 188 | 218 | 15 | 153 |
| 25 | ODR at Eastern river crossing |  | NB | 0 | 0 | 0 | 0 | 0 |
| 25 | ODR at Eastern river crossing |  | SB | 0 | 0 | 0 | 0 | 0 |
| 26 | ODR at Lugg Meadows |  | NB | 0 | 0 | 0 | 0 | 0 |
| 26 | ODR at Lugg Meadows |  | SB | 0 | 0 | 0 | 0 | 0 |
| 27 | ODR at New Court |  | NB | 0 | 0 | 0 | 0 | 0 |
| 27 | ODR at New Court |  | SB | 0 | 0 | 0 | 0 | 0 |
| 28 | ODR at Shelwick Green |  | EB | 326 | 425 | 433 | 417 | 419 |
| 28 | ODR at Shelwick Green |  | WB | 308 | 498 | 645 | 460 | 488 |
| 29 | ODR at Lyde Arundel |  | EB | 609 | 719 | 749 | 717 | 710 |
| 29 | ODR at Lyde Arundel |  | WB | 663 | 921 | 1093 | 894 | 909 |
| 30 | ODR nr Towtree Lane |  | EB | 352 | 510 | 547 | 461 | 506 |
| 30 | ODR nr Towtree Lane |  | WB | 284 | 441 | 584 | 382 | 425 |
| 31 | ODR nr Swainshill |  | NB | 638 | 921 | 951 | 820 | 906 |
| 31 | ODR nr Swainshill |  | SB | 661 | 985 | 1151 | 915 | 968 |
| 32 | ODR at Western river crossing |  | NB | 666 | 891 | 947 | 725 | 880 |
| 32 | ODR at Western river crossing |  | SB | 513 | 661 | 820 | 544 | 702 |
| 33 | ODR nr Grafton |  | EB | 368 | 509 | 652 | 418 | 590 |
| 33 | ODR nr Grafton |  | WB | 716 | 955 | 980 | 815 | 969 |

F. 4 East ODR Impact Table during PM peak

|  |  |  |  | East ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 1 | A49 north of Holmer | A49 | NB | 155 | 164 | 185 | 222 | 175 |
| 1 | A49 north of Holmer | A49 | SB | 34 | -69 | -15 | 54 | -63 |
| 2 | Holmer Road opp Racecourse | A49 | NB | -21 | 94 | 123 | 130 | 97 |
| 2 | Holmer Road opp Racecourse | A49 | SB | -28 | 21 | 19 | 96 | 55 |
| 3 | Newtown Road | A49 | EB | 61 | 109 | 84 | 127 | 88 |
| 3 | Newtown Road | A49 | WB | -8 | 12 | -2 | -25 | -21 |
| 4 | Edgar Street at Football Ground | A49 | NB | -72 | -76 | -62 | -134 | -56 |
| 4 | Edgar Street at Football Ground | A49 | SB | 20 | 17 | 53 | 19 | 18 |
| 5 | Victoria Street | A49 | NB | -321 | -271 | -275 | -307 | -236 |
| 5 | Victoria Street | A49 | SB | -237 | -187 | -180 | -237 | -189 |
| 6 | Ross Road nr Boycott Rd | A49 | NB | -485 | -545 | -551 | -519 | -536 |
| 6 | Ross Road nr Boycott Rd | A49 | SB | -186 | -237 | -238 | -203 | -231 |
| 7 | Ross Road nr Mayberry Ave | A49 | NB | -239 | -405 | -397 | -328 | -383 |
| 7 | Ross Road nr Mayberry Ave | A49 | SB | -10 | 4 | -62 | -52 | -59 |
| 9 | A49 Ross Rd at Grafton | A49 | NB | 92 | 117 | 40 | 57 | 46 |
| 9 | A49 Ross Rd at Grafton | A49 | SB | -123 | -276 | -278 | -206 | -263 |
|  | Total Flow Reduction | A49 | NB | -899 | -910 | -939 | -904 | -914 |
|  |  | A49 | SB | -469 | -618 | -617 | -402 | -644 |
| 10 | Roman Road east of A49 | A4103 | EB | -285 | -363 | -408 | -407 | -340 |
| 10 | Roman Road east of A49 | A4103 | WB | -431 | -312 | -368 | -367 | -369 |
| 11 | Roman Road west of A49 | A4103 | EB | -139 | -38 | -45 | -55 | -34 |
| 11 | Roman Road west of A49 | A4103 | WB | -197 | 0 | -26 | -41 | -11 |
| 12 | Roman Road nr Staniers Way | A4103 | EB | 23 | -50 | -41 | -83 | 0 |
| 12 | Roman Road nr Staniers Way | A4103 | WB | -172 | -179 | -216 | -290 | 0 |
|  | Total Flow Reduction | A4103 | EB | -401 | -451 | -494 | -545 | -374 |
|  |  | A4103 | WB | -800 | -491 | -610 | -698 | -380 |
| 13 | Alyestone Hill | A465 | NB | -162 | -106 | -171 | -174 | -186 |
| 13 | Alyestone Hill | A465 | SB | -11 | -50 | -72 | 4 | -64 |
| 14 | Commercial Road at Bus Station | A465 | NB | 21 | 2 | -4 | 15 | -4 |
| 14 | Commercial Road at Bus Station | A465 | SB | -8 | -6 | -15 | -19 | -19 |
| 15 | Belmont Road | A465 | EB | -147 | -117 | -113 | -117 | -96 |
| 15 | Belmont Road | A465 | WB | -126 | -100 | -94 | -146 | -106 |
|  | Total Flow Reduction | A49 | N/EB | -288 | -221 | -288 | -276 | -286 |
|  |  | A49 | S/WB | -145 | -156 | -181 | -161 | -189 |
| 16 | Ledbury Road nr Quarry Rd | A438 | NB | -67 | -108 | -85 | -86 | -109 |
| 16 | Ledbury Road nr Quarry Rd | A438 | SB | -73 | -56 | -62 | -65 | -66 |
| 17 | Blue School Street | A438 | EB | -27 | -15 | -22 | -28 | -5 |


|  |  |  |  | East ODR minus No ODR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Location | Name | Dir | Do Min | DS1 | DS2 | DS3 | DS4 |
| 17 | Blue School Street | A438 | WB | -58 | -71 | -54 | -21 | -64 |
| 18 | Eign Street | A438 | EB | -149 | -156 | -187 | -134 | -162 |
| 18 | Eign Street | A438 | WB | -37 | 16 | 2 | 58 | 11 |
| 19 | Kings Acre Road | A438 | EB | -95 | -100 | -87 | -154 | -94 |
| 19 | Kings Acre Road | A438 | WB | -19 | -20 | -44 | -111 | -82 |
|  | Total Flow Reduction | A49 | N/EB | -338 | -379 | -381 | -402 | -370 |
|  |  | A49 | S/WB | -187 | -131 | -158 | -139 | -201 |
| 20 | Three Elms Road | A4110 | NB | -164 | -295 | -296 | -291 | -178 |
| 20 | Three Elms Road | A4110 | SB | 14 | 123 | 61 | 68 | 68 |
| 21 | ESG Link Road |  | EB | -34 | -33 | -21 | -69 | -31 |
| 21 | ESG Link Road |  | WB | -24 | -44 | -48 | -30 | -40 |
| 22 | Hampton Park Road |  | EB | 205 | 264 | 255 | 282 | 237 |
| 22 | Hampton Park Road |  | WB | 124 | 121 | 140 | 166 | 132 |
| 23 | Holme Lacy Road |  | EB | -24 | -16 | -17 | 11 | -20 |
| 23 | Holme Lacy Road |  | WB | -5 | 110 | 38 | 14 | 32 |
| 24 | Rotherwas Access Road |  | EB | 361 | 412 | 445 | 457 | 450 |
| 24 | Rotherwas Access Road |  | WB | 307 | 189 | 286 | 327 | 294 |
|  | Total Flow Reduction | A49 | EB | 508 | 627 | 662 | 681 | 636 |
|  |  | A49 | WB | 402 | 376 | 416 | 477 | 418 |
| 25 | ODR at Eastern river crossing |  | NB | 1157 | 1333 | 1380 | 1272 | 1387 |
| 25 | ODR at Eastern river crossing |  | SB | 1170 | 1558 | 1612 | 1454 | 1602 |
| 26 | ODR at Lugg Meadows |  | NB | 822 | 926 | 946 | 866 | 952 |
| 26 | ODR at Lugg Meadows |  | SB | 744 | 867 | 903 | 788 | 905 |
| 27 | ODR at New Court |  | NB | 657 | 760 | 764 | 689 | 769 |
| 27 | ODR at New Court |  | SB | 555 | 619 | 638 | 546 | 636 |
| 28 | ODR at Shelwick Green |  | EB | 371 | 523 | 518 | 451 | 531 |
| 28 | ODR at Shelwick Green |  | WB | 471 | 738 | 696 | 560 | 725 |
| 29 | ODR at Lyde Arundel |  | EB | 673 | 796 | 813 | 778 | 804 |
| 29 | ODR at Lyde Arundel |  | WB | 778 | 1074 | 1057 | 939 | 1060 |
| 30 | ODR nr Towtree Lane |  | EB | 86 | 102 | 116 | 117 | 99 |
| 30 | ODR nr Towtree Lane |  | WB | 39 | 95 | 94 | 54 | 84 |
| 31 | ODR nr Swainshill |  | NB | 0 | 0 | 0 | 0 | 0 |
| 31 | ODR nr Swainshill |  | SB | 0 | 0 | 0 | 0 | 0 |
| 32 | ODR at Western river crossing |  | NB | 0 | 0 | 0 | 0 | 0 |
| 32 | ODR at Western river crossing |  | SB | 0 | 0 | 0 | 0 | 0 |
| 33 | ODR nr Grafton |  | EB | 290 | 370 | 388 | 391 | 394 |
| 33 | ODR nr Grafton |  | WB | 477 | 568 | 548 | 533 | 551 |

Appendix G

Rank Calculation

## G. 1 AM Rank Calculation

| from Table 4.6 |  |  |
| :--- | ---: | ---: |
| Scenario | Speed | Rank |
| EastODRDS3 | 36 | 1 |
| WestODRDS2 | 35.6 | 2 |
| WestODRDS4 | 35.6 | 2 |
| EastODRDS4 | 35.4 | 3 |
| WestODRDS1 | 35.3 | 4 |
| WestODRDS3 | 35.3 | 4 |
| EastODRDS1 | 35.2 | 5 |
| EastODRDS2 | 35.2 | 5 |
| NOODRDS3 | 28.1 | 6 |
| NOODRDS4 | 27.1 | 7 |
| NOODRDS2 | 27 | 8 |
| NOODRDS1 | 26.6 | 9 |


| from Table 4.6 |  |  |
| :--- | ---: | ---: |
| Scenario | Link <br> delay | Rank |
| NOODRDS3 | 66 | 1 |
| NOODRDS4 | 72 | 2 |
| NOODRDS1 | 73 | 3 |
| NOODRDS2 | 73 | 3 |
| WestODRDS3 | 74 | 4 |
| WestODRDS4 | 88 | 5 |
| WestODRDS2 | 90 | 6 |
| WestODRDS1 | 93 | 7 |
| EastODRDS3 | 93 | 7 |
| EastODRDS1 | 115 | 8 |
| EastODRDS4 | 117 | 9 |
| EastODRDS2 | 119 | 10 |


| from Table 4.6 |  |  |
| :--- | ---: | ---: |
| Scenario | Queues | Rank |
| EastODRDS3 | 814 | 1 |
| EastODRDS4 | 865 | 2 |
| EastODRDS1 | 867 | 3 |
| EastODRDS2 | 884 | 4 |
| WestODRDS3 | 885 | 5 |
| WestODRDS2 | 902 | 6 |
| WestODRDS4 | 903 | 7 |
| WestODRDS1 | 915 | 8 |
| NOODRDS3 | 1219 | 9 |
| NOODRDS4 | 1347 | 10 |
| NOODRDS2 | 1355 | 11 |
| NOODRDS1 | 1363 | 12 |


| from Table 5.7 |  |  |
| :--- | :--- | ---: |
| Scenario | Journ. <br> Time | Rank |
| EastODRDS3 | $162: 08$ | 1 |
| EastODRDS1 | $163: 15$ | 2 |
| EastODRDS2 | $165: 01$ | 3 |
| EastODRDS4 | $166: 43$ | 4 |
| WestODRDS2 | $170: 13$ | 5 |
| WestODRDS3 | $170: 50$ | 6 |
| WestODRDS4 | $170: 59$ | 7 |
| WestODRDS1 | $171: 58$ | 8 |
| NOODRDS3 | $194: 58$ | 9 |
| NOODRDS2 | $199: 01$ | 10 |
| NOODRDS4 | $199: 31$ | 11 |
| NOODRDS1 | $201: 34$ | 12 |


| from Table 5.11 |  |  |
| :--- | ---: | ---: |
| Scenario | Junc. <br> stress | Rank |
| EastODRDS3 | 24 | 1 |
| EastODRDS1 | 28 | 2 |
| WestODRDS2 | 29 | 3 |
| WestODRDS4 | 29 | 3 |
| WestODRDS3 | 30 | 4 |
| EastODRDS4 | 30 | 4 |
| EastODRDS2 | 32 | 5 |
| WestODRDS1 | 35 | 6 |
| NOODRDS3 | 50 | 7 |
| NOODRDS4 | 53 | 8 |
| NOODRDS2 | 56 | 9 |
| NOODRDS1 | 57 | 10 |


| from Table 5.9 |  |  |
| :--- | ---: | ---: |
| Scenario | JT_A49 | Rank |
| EastODRDS2 | 1746 | 1 |
| EastODRDS4 | 1753 | 2 |
| WestODRDS2 | 1763 | 3 |
| WestODRDS3 | 1767 | 4 |
| WestODRDS1 | 1775 | 5 |
| EastODRDS1 | 1777 | 6 |
| EastODRDS3 | 1777 | 6 |
| WestODRDS4 | 1782 | 7 |
| NOODRDS3 | 2028 | 8 |
| NOODRDS1 | 2056 | 9 |
| NOODRDS2 | 2114 | 10 |
| NOODRDS4 | 2115 | 11 |


| From Table 6-1,6-2,6-3 |  |  |
| :--- | ---: | ---: |
| Scvenario | Cost | Rank |
| EastODRDS3 | 16,430 | 1 |
| EastODRDS1 | 16,549 | 2 |
| EastODRDS4 | 16,559 | 3 |
| EastODRDS2 | 16,571 | 4 |
| WestODRDS3 | 16,849 | 5 |
| WestODRDS2 | 16,902 | 6 |
| WestODRDS1 | 16,915 | 7 |
| WestODRDS4 | 16,919 | 8 |
| NOODRDS3 | 17,743 | 9 |
| NOODRDS2 | 18,008 | 10 |
| NOODRDS1 | 18,017 | 11 |
| NOODRDS4 | 18,019 | 12 |

## G. 2 Final AM Ranking

| Criteria |  | Av. Speed | Link Delays | Queues | Journey Time | Junction Stress | Impact <br> on <br> Trunk <br> Rd as <br> JT | Travel Cost | Total Score | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No ODR | DS1 | 9 | 3 | 12 | 12 | 10 | 9 | 11 | 66 | 10 |
|  | DS2 | 8 | 3 | 11 | 10 | 9 | 10 | 10 | 61 | 9 |
|  | DS3 | 6 | 1 | 9 | 9 | 7 | 8 | 9 | 49 | 8 |
|  | DS4 | 7 | 2 | 10 | 11 | 8 | 11 | 12 | 61 | 9 |
| Western ODR | DS1 | 4 | 7 | 8 | 8 | 6 | 5 | 7 | 45 | 7 |
|  | DS2 | 2 | 6 | 6 | 5 | 3 | 3 | 6 | 31 | 4 |
|  | DS3 | 4 | 4 | 5 | 6 | 4 | 4 | 5 | 32 | 5 |
|  | DS4 | 2 | 5 | 7 | 7 | 3 | 7 | 8 | 39 | 6 |
| Eastern ODR | DS1 | 5 | 8 | 3 | 2 | 2 | 6 | 2 | 28 | 3 |
|  | DS2 | 5 | 10 | 4 | 3 | 5 | 1 | 4 | 32 | 5 |
|  | DS3 | 1 | 7 | 1 | 1 | 1 | 6 | 1 | 18 | 1 |
|  | DS4 | 3 | 9 | 2 | 4 | 4 | 2 | 3 | 27 | 2 |

## G. 3 PM Rank Calculation

| from Table 4.7 |  |  |
| :--- | ---: | ---: |
| Scenario | Speed | Rank |
| WestODRDS4 | 34.1 | 1 |
| EastODRDS3 | 33.7 | 2 |
| WestODRDS1 | 33.5 | 3 |
| EastODRDS1 | 33.3 | 4 |
| WestODRDS3 | 33.1 | 5 |
| EastODRDS4 | 32.9 | 6 |
| EastODRDS2 | 32.8 | 7 |
| WestODRDS2 | 32.4 | 8 |
| NOODRDS3 | 26.4 | 9 |
| NOODRDS1 | 25.5 | 10 |
| NOODRDS4 | 25.5 | 10 |
| NOODRDS2 | 25.3 | 11 |


| from Table 4.7 |  |  |
| :--- | ---: | ---: |
| Scenario | Link <br> delay | Rank |
| NOODRDS3 | 65 | 1 |
| NOODRDS2 | 70 | 2 |
| NOODRDS1 | 71 | 3 |
| NOODRDS4 | 72 | 4 |
| WestODRDS3 | 76 | 5 |
| WestODRDS1 | 96 | 6 |
| WestODRDS4 | 98 | 7 |
| EastODRDS3 | 103 | 8 |
| WestODRDS2 | 119 | 9 |
| EastODRDS1 | 120 | 10 |
| EastODRDS2 | 124 | 11 |
| EastODRDS4 | 125 | 12 |


| from Table 4.7 |  |  |
| :--- | ---: | ---: |
| Scenario | Queues | Rank |
| EastODRDS3 | 1013 | 1 |
| WestODRDS4 | 1048 | 2 |
| EastODRDS1 | 1069 | 3 |
| WestODRDS3 | 1086 | 4 |
| WestODRDS1 | 1088 | 5 |
| EastODRDS4 | 1109 | 6 |
| EastODRDS2 | 1117 | 7 |
| WestODRDS2 | 1244 | 8 |
| NOODRDS3 | 1430 | 9 |
| NOODRDS1 | 1555 | 10 |
| NOODRDS4 | 1572 | 11 |
| NOODRDS2 | 1602 | 12 |


| from Table 5.8 |  |  |
| :--- | :--- | ---: |
| Scenario | Journ. <br> Time | Rank |
| EastODRDS3 | $177: 55$ | 1 |
| EastODRDS1 | $182: 53$ | 2 |
| WestODRDS4 | $187: 36$ | 3 |
| EastODRDS4 | $188: 03$ | 4 |
| EastODRDS2 | $188: 33$ | 5 |
| WestODRDS1 | $189: 37$ | 6 |
| WestODRDS3 | $193: 42$ | 7 |
| WestODRDS2 | $204: 57$ | 8 |
| NOODRDS3 | $217: 40$ | 9 |
| NOODRDS1 | $226: 18$ | 10 |
| NOODRDS2 | $228: 20$ | 11 |
| NOODRDS4 | $229: 56$ | 9 |


| from Table 5.12 |  |  |
| :--- | ---: | ---: |
| Scenario | Junc. <br> stress | Rank |
| EastODRDS3 | 30 | 1 |
| EastODRDS4 | 32 | 2 |
| WestODRDS4 | 33 | 3 |
| EastODRDS2 | 34 | 4 |
| WestODRDS3 | 34 | 4 |
| WestODRDS1 | 35 | 5 |
| EastODRDS1 | 36 | 6 |
| WestODRDS2 | 38 | 7 |
| NOODRDS3 | 49 | 8 |
| NOODRDS1 | 51 | 9 |
| NOODRDS2 | 51 | 9 |
| NOODRDS4 | 51 | 9 |


| from Table 5.10 |  |  |
| :--- | ---: | ---: |
| Scenario | JT_A49 | Rank |
| EastODRDS3 | 1807 | 1 |
| WestODRDS1 | 1826 | 2 |
| EastODRDS1 | 1830 | 3 |
| WestODRDS4 | 1835 | 4 |
| WestODRDS3 | 1866 | 5 |
| EastODRDS2 | 1885 | 6 |
| EastODRDS4 | 1902 | 7 |
| WestODRDS2 | 1967 | 8 |
| NOODRDS3 | 2042 | 9 |
| NOODRDS1 | 2137 | 10 |
| NOODRDS4 | 2213 | 11 |
| NOODRDS2 | 2230 | 12 |


| From Table 6-1,6-2,6-3 |  |  |
| :--- | ---: | ---: |
| Scenario | Cost | Rank |
| EastODRDS3 | 17,412 | 1 |
| EastODRDS1 | 17,549 | 2 |
| EastODRDS4 | 17,673 | 3 |
| EastODRDS2 | 17,687 | 4 |
| WestODRDS4 | 17,896 | 5 |
| WestODRDS1 | 17,904 | 6 |
| WestODRDS3 | 17,974 | 7 |
| WestODRDS2 | 18,291 | 8 |
| NOODRDS3 | 19,010 | 9 |
| NOODRDS1 | 19,345 | 10 |
| NOODRDS4 | 19,435 | 11 |
| NOODRDS2 | 19,445 | 12 |

## G. 4 Final PM Ranking

| Criteria |  | Av. Speed | Link Delays | Queues | Journey Time | Junction Stress | Impact <br> on <br> Trunk <br> Rd as <br> JT | Travel Cost | Total Score | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No ODR | DS1 | 10 | 3 | 10 | 10 | 9 | 10 | 10 | 62 | 10 |
|  | DS2 | 11 | 2 | 12 | 11 | 9 | 12 | 12 | 69 | 12 |
|  | DS3 | 9 | 1 | 9 | 9 | 8 | 9 | 9 | 54 | 8 |
|  | DS4 | 10 | 4 | 11 | 12 | 9 | 11 | 11 | 68 | 11 |
| Western ODR | DS1 | 3 | 6 | 5 | 6 | 5 | 2 | 6 | 33 | 4 |
|  | DS2 | 8 | 9 | 8 | 8 | 7 | 8 | 8 | 56 | 9 |
|  | DS3 | 5 | 5 | 4 | 7 | 4 | 5 | 7 | 37 | 5 |
|  | DS4 | 1 | 7 | 2 | 3 | 3 | 4 | 5 | 25 | 2 |
| Eastern ODR | DS1 | 4 | 10 | 3 | 2 | 6 | 3 | 2 | 30 | 3 |
|  | DS2 | 7 | 11 | 7 | 5 | 4 | 6 | 4 | 44 | 7 |
|  | DS3 | 2 | 8 | 1 | 1 | 1 | 1 | 1 | 15 | 1 |
|  | DS4 | 6 | 12 | 6 | 4 | 2 | 7 | 3 | 40 | 6 |


[^0]:    Source: Herefordshire Council

